

BRKVIR-2002

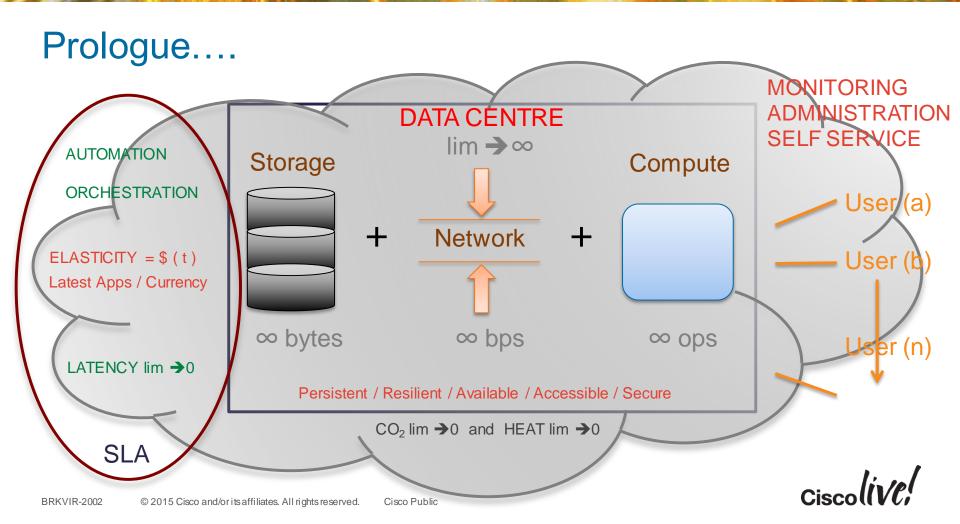
Leon Czechowicz

Systems Engineer

Cisco (iVe.

Abstract

The recent trend towards VDI and away from traditional fixed desktops is due to the drivers of operational efficiency and user experience demands. While the concept of remote desktops is certainly not new, modern networks can enabled transparent, media rich, virtual experiences when configured well. The desktop is no longer just a piece of hardware its an instance supported by numerous services that can be implemented on a variety of physical and application form factors from desktops to thin clients, various remote clients and browsers to simplified mobile experiences.

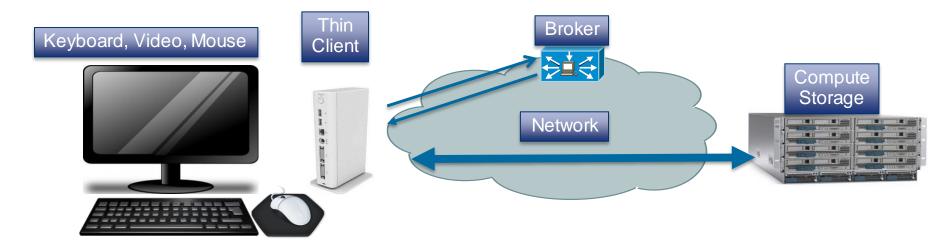

The Architecture of the entire VDI system needs to be tailored to support the highest quality application transactions. New instances must be enabled with automation, rapid spawn, monitoring and failover capabilities. Users demand fast application and storage transaction speeds and no loss of capability between differing device portals. Because the nature of VDI data flows, their size and new technology innovations such as ACI and storage acceleration, the overall architecture required to support VDI is very different today than it has been in the past. This session takes you from a VDI overview right through to the innovations used to optimise VDI delivery, from server, to storage, acceleration and network optimisation techniques.

Agenda

- Overview
- Software and Object Abstraction
- Enterprise Networks
- Data Centre Compute, Storage and Network
- Newest Concepts
- Application Acceleration
- Strategy

The Desktop Ball and Chain

Keyboard, Video, Mouse



- Personal Computer is disaggregated
- Keyboard, Video, and Mouse stay with user
- Compute and storage move to the data centre
- Network availability is required for all application access
- Network performance is critical to user experience

- Large OS
- Many local applications
- Vulnerable
- Constant patching
- Data backup
- Complex management
- Software distribution delivery challenges
- Skilled local support staff required

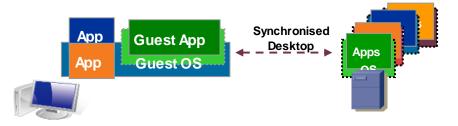
The Network is the Desktop

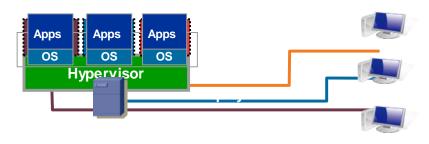
- Personal Computer is disaggregated
- Keyboard, Video, and Mouse stay with user
- Compute and storage move to the data centre
- Network availability is required for all application access
- Network performance is critical to user experience

The Anywhere Any-device Consumer Demand

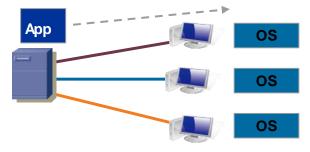
New Methods and Combinations to achieve desired outcomes

- Overarching Management eg AppSense
- New models VMWare App Volumes (formerly Cloud Volumes)
- New wrappers, VSAN ready, Branch **Desktop Virtualisation**
- Desktop sharing
 - Webex
 - Project Squared
- Software/Endpoint form factor Differentiation/Optimisation
- Options: Distributed Virtual Desktops or User State Virtualisation

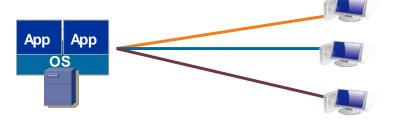




Virtual Desktop Models


Virtual Desktop Streaming

Hosted Virtual Desktop

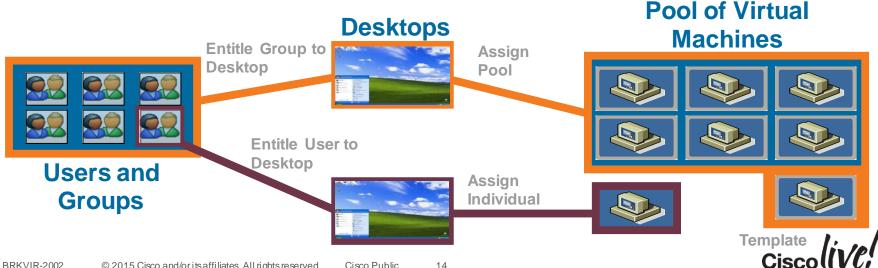


Application Streaming

Client Hosted Computing

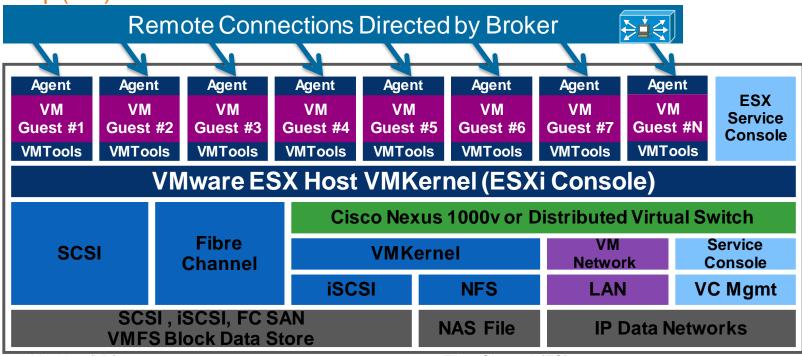
Terminal Services or Published Applications

Server Hosted Computing Cisco


Software

Major Players - Citrix and Vmware components / Nomenclature

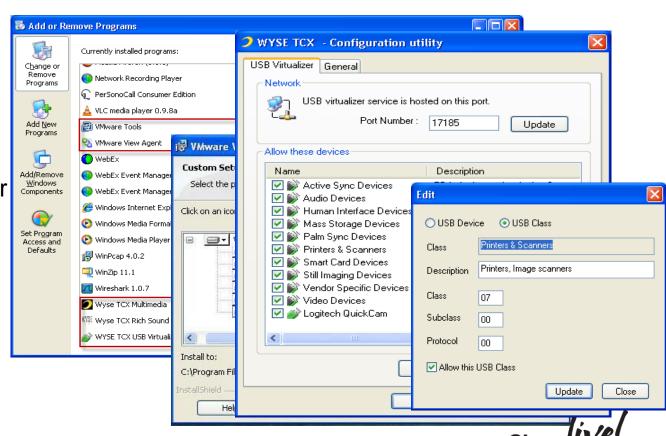
Function	VMware Horizon View	Citrix XenDesktop		
Display Protocol Client	Horizon View Client	Citrix Receiver		
Desktop Agent	View Agent contains PCoIP and RDP with Wyse TCX	Citrix Virtual Desktop Agent contains ICA and HDX Servers		
Broker Provisioning	Composer/Thinapp	Citrix Provisioning Server (PVS)		
Broker Routing	Connection Server	Citrix Desktop Delivery Controller (DDC)		
Broker Proxy	Security Server	Citrix Access Gateway		
Portal	View Portal	Citrix Web Interface		
Administration	View Administrator	Citrix Management Console		
Personalisation	RTO Persona Management	Ringcube Personal vDisk		
Hypervisor	VSphere ESX	XenServer		
Orchestration	Virtual Centre	XenCentre		


Broker Desktop Entitlement

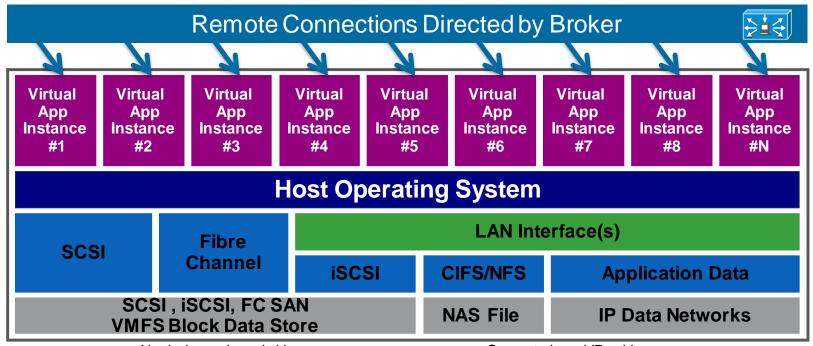
- Non-Persistent or Pooled Generic virtual desktop assigned to users on a per session. first come first server basis and then returned to the pool (possibly with profile removed) or destroyed
- **Persistent or Assigned** Permanently assigned to a user statically or by first to connect
- **Personalised Non-persistent** Abstracted persona applied to non-persistent desktops

VMWare View Model

Desktop (OS) Virtualisation


- Virtual Machine (VM)
- Small Computer System Interface (SCSI)
- Storage Area Network (SAN)
- Virtual Machine File System (VMFS)

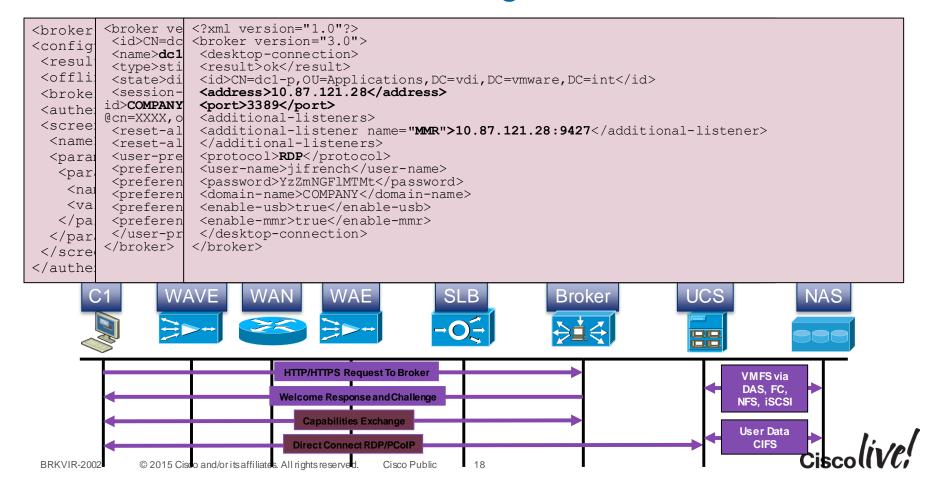
- Fibre Channel (FC)
- Network File System (NFS)
- Network Attached Storage (NAS)
- Virtual Centre (VC)


Display Protocol Server Components (Agent)

- VMware Tools
- Broker Agent
- Multimedia Redirector (Windows Media and Flash)
- Rich Sound Server (Analog Mic/Skr)
- USB Virtualisation Server

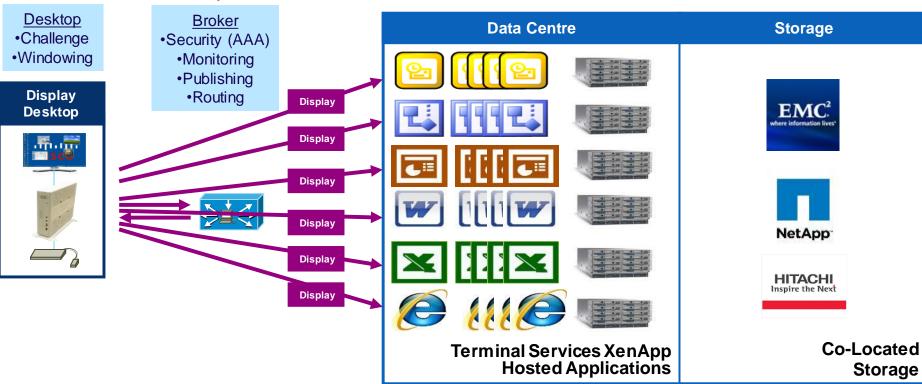
XenApp Model

Application Virtualisation (Terminal Services)

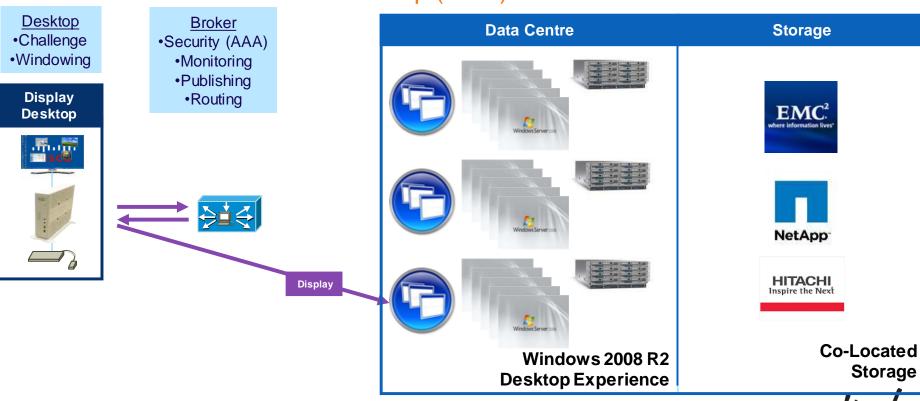

May not work if:

- No device or kernel drivers
- No Windows services
- No Windows class names or window name
- Installers cannot require a restart during install

- Support shared IP addresses
- No Inter-Process Communications
- No Distributed Component Object Model (DCOM)
- Registry/App Objects must link to USER32.DLL



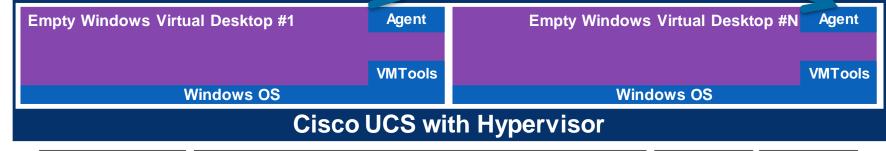
Direct Mode Broker Exchange

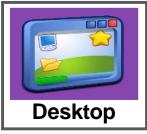

Software

Published Desktop

Software

MultiUser Hosted Shared Desktop (HSD)

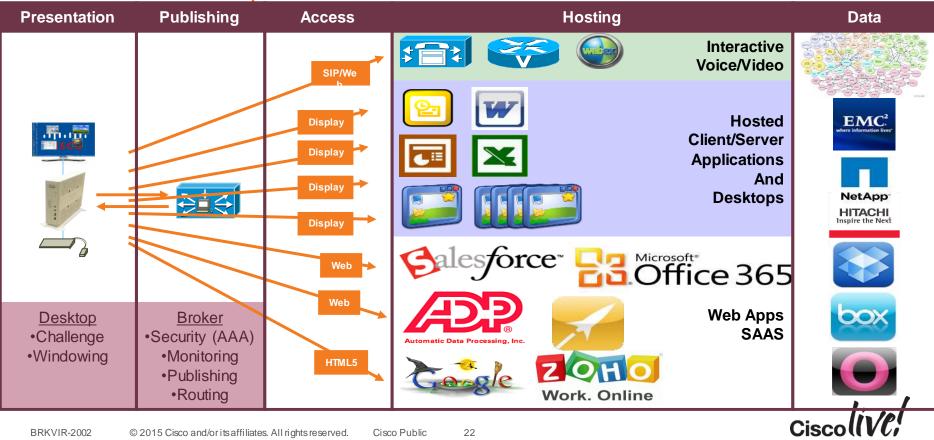



Stateful Desktop

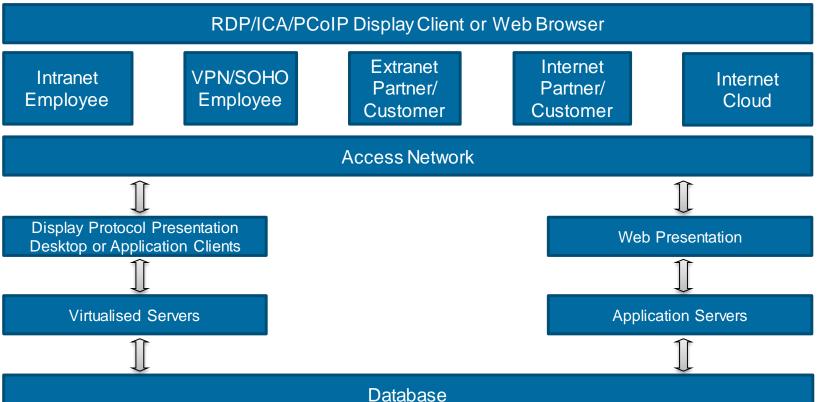
Hosted Desktop with Streamed Virtual Application

Display Connection #1

Display Connection #N



- Profile decoupled from desktop OS using tools like AppSense
- Desktop provisioned with minimal or fixed set of applications installed
- Applications reside on File (VMware) or Streaming Server (Citrix)
- Administrator manages one master copy of an application that is streamed at run time isco


Software

Presentation Desktop

Software

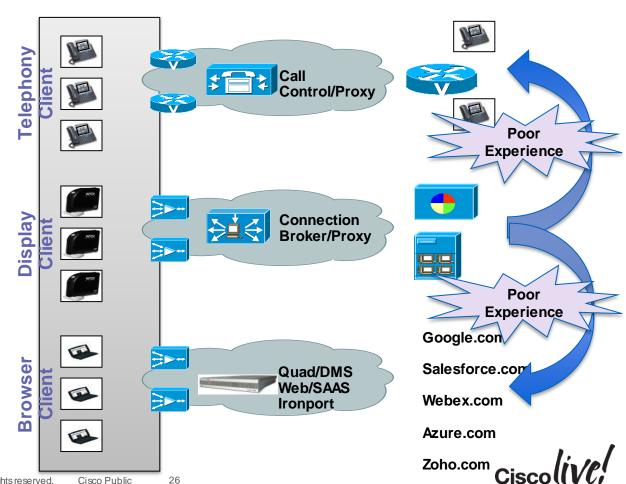
Display versus Web Application Presentation

Where To Go

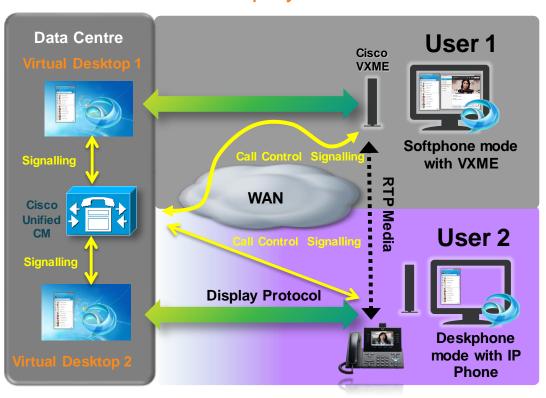
Citrix and Vmware as Cisco Desktop Virtualisation Partners

Vmware and Cisco

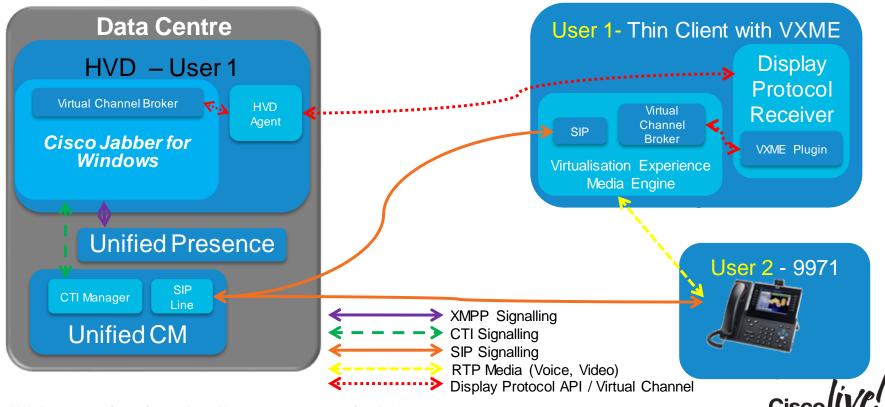
- http://www.cisco.com/go/vmware
- Cisco Desktop Virtualisation with VMWare Horizon: http://www.ciscovmwarevdi.com/
- VMWare and Cisco
 Branch: http://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-e-series-servers/solution_overview_c22-726883.html


Citrix and Cisco

- www.cisco.com/go/citrix
- VDI-in-a-Box: <u>http://www.cisco.com/en/US/netsol/ns978/index.html</u>
- Cisco ACI and Citrix Netscaler joint Solution: http://www.cisco.com/c/en/us/solutions/data-center-virtualization/unified-fabric/citrix-netscaler.html
- Citrix VDI-in-a-box: http://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/unified-computing/fle_sb_citrix.pdf



- Communications
 - Peer to peer
 - Real time experience
 - Call Admission Control
- Client/Server
 - Client to server
 - Mix of real time and bulk transfer
 - Allow all
- Web/Streaming/SAAS
 - Client to server
 - Network tolerant
 - Mostly bulk transfer


Cisco Jabber Two Deployment Modes for Voice/Video

- Cisco Jabber Windows on remote virtual desktop
 - Citrix XenDesktop, XenApp (published desktop) and Vmware View
- Softphone mode with VXME
 - UC voice/video offloaded to VXME on local thin client
 - Voice/video overlaid on remote virtual desktop for integrated experience
- Deskphone control mode (CTI) of Cisco IP Phone
 - UC voice/video offloaded to Cisco IP Phone
 - · Voice/video displayed on Cisco IP Phone

Virtualisation Experience Media Engine Interaction

Software Strategy for Virtual Environments

- Virtualisation Experience Media Engine (VXME)
 - Software that enables Jabber to run in virtualised environments
- Thin client and Windows PC
 - Dell Wyse Z50 with Linux VXME
 - Windows thin clients and PCs
- Enable the Jabber experience running on virtual desktop as available today on your PC
 - Presence & IM
 - High definition video & wideband audio
 - Conferencing

Cisco DX80 Collaboration End Point

VDI (Virtual Desktop Interface) allows users to access their remote virtualised desktops, apps, and docs from a DX80 with Android based software client.

Can also be utilised simply as a screen for external thin client on top of collaboration capabilities.

BRKVIR-2002

Decoding the VDI Protocol Stack

Microsoft Citrix XenDesktop VMware View **Application** RDS **PCoIP RDP** ICA/HDX 4172 3389 2598/1494 **Underlying Protocols TCP UDP** Client-side hardware often No Client-side hardware dependency No client-side or server-side used for optimal experience Remote FX requires H/W assist (server hardware dependency Server side hardware GPU) Announced hardware **Deployment** available Standards-based encryption model specification for 3rd parties Considerations MMR with Win7 desktops SSL encrypted Standards-based as well as not supported proprietary encryption models TCP 4172 used for control RC5 or SSL encrypted AES-256 bit encrypted

Display Protocol Considerations Checklist

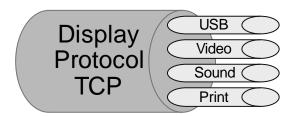
- Network
 - Transport TCP, UDP, RTP
 - Behaviour bandwidth, congestion, latency, drop
- Channels
 - Inband
 - Out of band
- Acceleration
 - Encryption
 - Compression
- USB
 - Headset
 - Print
 - Drive
 - Security

- Voice
 - USB headset
 - Analog microphone/speaker
- Graphics/Video
 - Quality— Lossy or lossless
 - Streaming Windows Media, Adobe Flash, QuickTime, or SilverLight
 - Telephony Jabber, Skype, Lync, Google, etc.
- Print
 - Print server
 - Printer location
 - User mobility

Display Protocol Summary

Protocol	Vendor	Transport	Bandwidth without WAAS (Approx)	Bandwidth with WAAS (Approx)
Remote Desktop Protocol (RDP)	Microsoft	TCP 3389	384 Kbps	96 Kbps
Independent Computing Architecture (ICA)	Citrix	TCP 2598 CGP TCP 1494 ICA	120 Kbps	60 Kbps
PC over IP (PCoIP)	Teradici / VMware	Media – UDP 50002/4172 Control – TCP 50002/4172	192 Kbps	192 Kbps

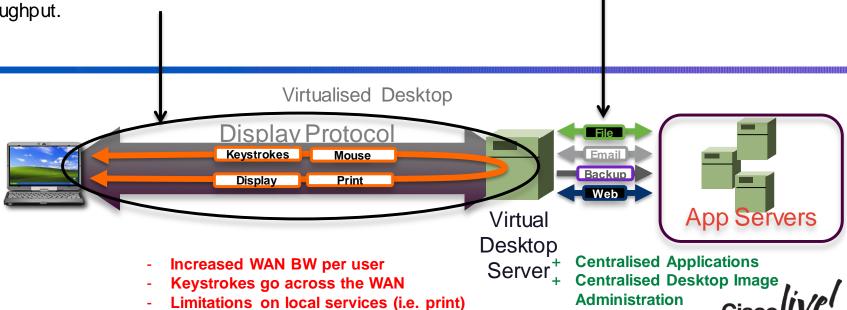
Client Types and Strategy


	User	Hardware	os	Software	Execution	Storage	Security	Life (Yrs)
Zero	Task	Chip	Firmware	None	All remote	None	Low risk	7-10
Thin	Task/Knowled ge	Limited	Hardened	Display	All remote	None	Low risk	5-7
Hybrid	Knowledge	Capable (possible media offload)	Hardened General (Linux or Windows Embedded)	Display Rich Media Web	Client/Server remote Rich media local	Transient Encrypted	Medium risk	5-7
Thick	Knowledge or Power	High End	Open General (Windows, Linux, Mac)	Unlimited	Mostly local Some remote	Persistent	High risk	3-5

- 1. Status-quo Use whatever desktop/notebook/etc you already have
- 2. Recycle PC Convert old PC hardware to a "homebrew" thin-client
- 3. New PC buy new desktop/notebook hardware with HVD and application virtualisation rollout
- 4. New thin/zero clients
- 5. New Collaboration (Hybrid) end point with receiver/client capability

Display Protocol Channels

- Display protocols operate at the session layer
- Display protocols were intended to remote applications and not desktops
- Desktop interactions require that some local client services be extended to the remote virtual desktop
- Channels provide a means to extend remote virtual desktop services
- Traditional channels cannot leverage network services like QoS, security, media bridging, stream splitting, or multicast


Enterprise Network

VDI User to Application Interactions

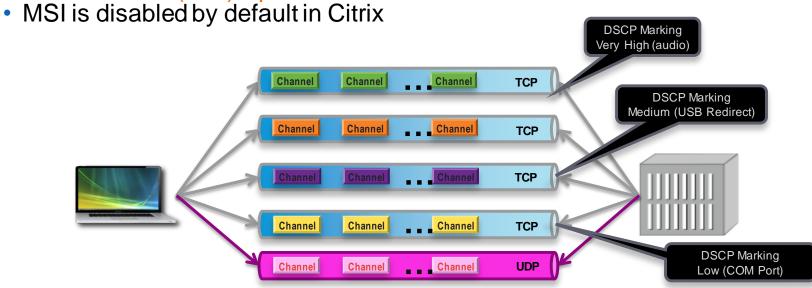
 The entire client display with all user interactions such as mouse movements and keystrokes is sent over the network. This requires not only bandwidth efficiency but fast throughput.


© 2015 Cisco and/or its affiliates. All rights reserved.

 With VDI, the same applications now transfer data between the Citrix server and the origin application server.

Enterprise Network

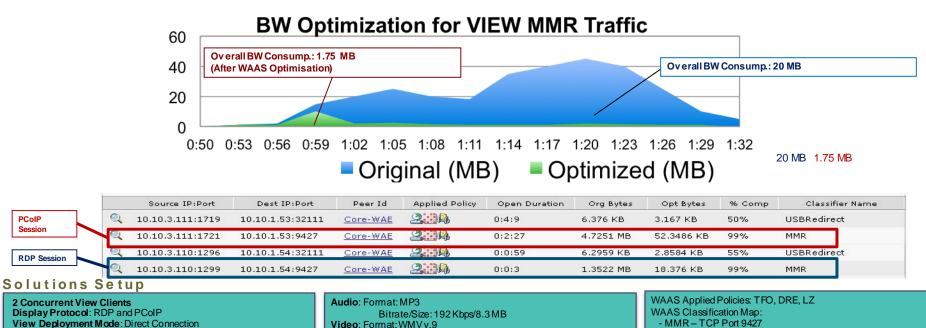
Citrix ICA Enhances VDI



- Wide Area Application Services (WAAS) optimises all channels within the ICA stream
- Single TCP connection (Stream) per ICA Client
- Citrix Proprietary Encrysption
- All ICA virtual channels inside the single stream
- Network based QoS cannot be applied to individual ICA virtual channels

Enterprise Network

Multi-stream ICA (MSI) Splits a User into 5 Streams



- Enabling Multi-Stream ICA on WAAS automatically enables it through Citrix.
- WAAS automatically discovers/optimises channels which use separate TCP connections.
- WAAS can dynamically apply DSCP markings to match Citrix priorities.

Enterprise Networks

WAAS Reduces MMR Bandwidth up to 99%

Rich Media Streaming w/ MMR (Direct Connect)

Bitrate: 1527 Kbps and 1772 Kbps

Size: 18.8 MB and 62.4 MB

- USB - TCP Port 32111

Overall Compression: 79.8%

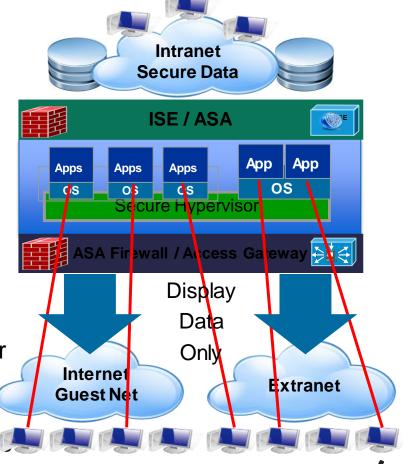
BW/Latency: T1/80 ms

Play Time: 5-6 Minutes of Repeat Tracks

Enterprise Networks

Bring Your Own Device (BYOD)

Use Case Requirements			Design Requirements		
Telephony	Client/Server	Local Apps/Data	VDI	VPN	MDM
Yes	Yes	Yes	Yes	Yes	Yes
Yes	Yes	No	Yes	No	No
Yes	No	Yes	No	Yes	Yes
No	Yes	Yes	Yes	Yes	Yes
No	No	Yes	No	Yes	Yes
No	Yes	No	Yes	No	No

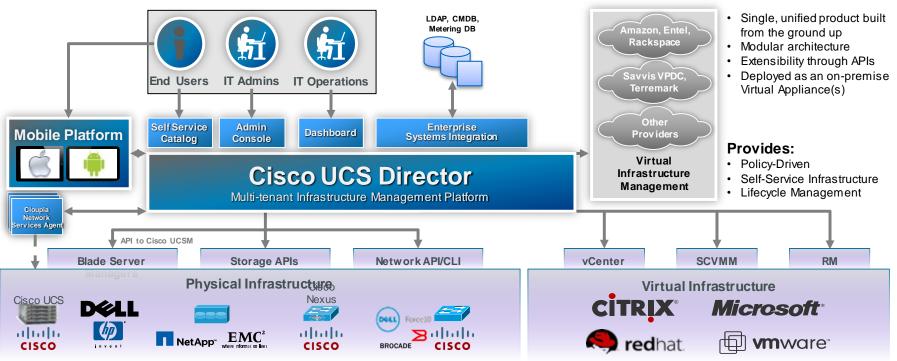

- BYOD or Not Who cares who bought it?
 - Company buys
 - Employee buys
 - Gift if you're lucky...
- VDI or Not
 - Offers access to legacy hosted client/server apps
 - Allow display only access to client/server with no local data
 - VPN generally not required

- Mobile Device Management (MDM) or Not
 - Often coupled with local device apps/data and VPN
- VPN or Not
 - Often used with local device apps/data beyond mobile mail and display client
- Cisco Communications or Not
 - Local communications software commonly using VPN (future embedded VPN)

Enterprise Networks

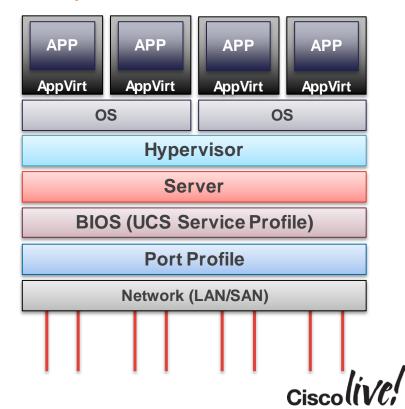
VDI Firewalls For Remote Access

- Non-Persistent desktops
- No direct network to network VPN
- Reduce data leakage risk
- Control access of consultants, contractors, developers, extranets connections, BYOD users, etc.
- ASA provides access gateway
- Identity Services Engine (ISE) provides user based access control policies
- ISE may also provide access client user identity, location, and device access control


Considerations

- Compute
 - Scale
 - Cost
 - Performance
 - Power/Cooling
 - Space
 - Cabling
- Storage Scale
 - Scale capacity (Linked and Flex Clones)
 - Scale IOPS

- Client Network Services
 - Security
 - Monitoring
 - IP address management
- Automation/Orchestration
 - Inter DC
 - Intra DC
 - InterCloud
 - Policy development
 - Enforcement/Error reduction
 - Profiles


Orchestration with UCS Director

UCS Director Provides Unified, Centralised Management of Physical and Virtualisation Infrastructure in Private and Hybrid Clouds

Compute Statelessness For Automation & Efficiency

- Application virtualisation decouples application from OS (i.e. ThinApp, AppV, Provisioning Server, etc.)
- Hypervisor decouples OS from compute hardware
- UCS Service Profile decouple server from BIOS
- Nexus Port Profile decouples cabling from server

Data Centre - Compute

http://www.cisco.com/go/ucs

UCS B Series - Blade Servers

	0 0 0011	oo blac		0				
	B22 M3	B200 M3	B200 M4	B230 M2	B420 M3	B440 M2	B260 M4	B460 M4
Proc	2	2	2	2	4	4	2	4
CPU	E5-2400/v2	E5-2600 /v2	E5-2600 /v3	E7-2800 / 8800	E5-4600	E7-4800 / 8800	E7 v2	E7 v2
Cores	20	16	36	20	32	40	30	60
Max RAM	384GB (32 DIMMs)	768GB (24 DIMMs)	768GB (32 DIMMs DDR4)	512GB (32 DIMMs)	1.5TB (48 DIMMs)	1TB (32 DIMMs)	3TB (48 DIMMs)	6TB (96 DIMMs)
Disk	2 x 2.5" HDD (2TB)	2 x 2.5" HDD (2TB)	2 x 2.5" SSD (3.2TB)	2 x 2.5" SSD (600GB)	4 x 2.5" (4TB)	4 x 2.5" (3.6TB)	2 x 2.5" (2TB)	4 x 2.5" (4TB)
Raid	0/1	0/1	0/1	0/1	0/1/5/10	0/1/5/10	0/1	0/1
Maxl/O	80Gbps	80Gbps	80Gps	20Gps	160Gbps	40Gbps	160Gbps	320Gbps
Mezz	2	2	1	1	3*	2	2	4
								1.

^{*} Using port expander technology VIC1240/1240/1280 combination

Data Centre - Compute http://www.cisco.com/go/ucs

UCS Rack Servers

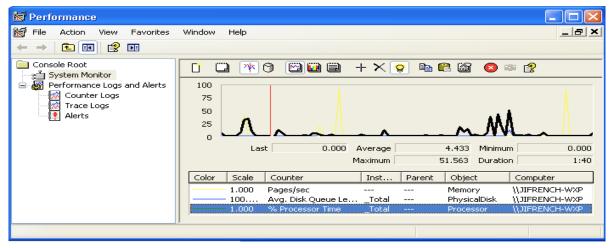
	C22 M3	C24 M3	C220 M3	C220 M4	C240 M3	C240 M4	C420 M3	C260 M2	C460 M2	C460M4
Proc	2	2	2	2	2	2	4	2	4	2
CPU	E5-2400v2	E5-2400v2	E5-2600v2	E5-2600v2	E5-2600v2	E5-2600v3	E5-4600	E7-2800/ 8800	E7-4800/ 8800	E7-4800/ 8800v2
Cores	16	16	16	24	24	16	32	20	40	16
Max RAM	384GB (12 DIMMs)	384GB (12 DIMMs)	512GB (16 DIMMs)	768GB (24 DIMMs)	768GB (24 DIMMs)	768GB (24 DIMMs)	1.5TB (48 DIMMs)	1TB (64 DIMMs)	2TB (64 DIMMs)	512GB (16 DIMMs)
Disk*	8xSFF/4xL FF	24xSFF/12x LFF	8xSFF/4xL FF	8xSFF/4xL FF	24xSFF/12x LFF	24xSFF/12x LFF	16xSFF	16xSFF	12xSFF	8xSFF/4x LFF
l/O	2 x 1Gb + 10Gbps Unified fabric option	4 x 1Gb + 10Gbps Unified fabric option	2 GE ports Two 10 Gbps ports	2 GE ports Two 10 Gbps ports	2 x 1Gb + 10Gbps Unified fabric option					

Data Centre - Compute

UCS Virtual Desktop Densities

Blade	Server CPU	Server Memory	Desktop Configuration	Per Blade	Per Chassis	Per Domain 20 Chassis
B250-M2	Xeon5600 3.33 GHz	192 GB	Win7-32 1.5 GB	110	440	8,800
B230-M2	Xeon2870 2.40 GHz	512 GB	Win7-64 2.0 GB	175	1,400	28,000
B200-M3	Dual E5-2690 / 8 Core	384 GB	Win7-64 2.0 GB	184	1,472	29,440
B240-M3	Dual E5-2690 / 8 Core	384 GB	Win7-64 2.0 GB	186	1,488	29,760

Hosted Virtual Desktop model


CPU Considerations for Virtual Machine

Number of Cores CPU Clock Speed Amount of Cache Memory CPU Virtualization Technology

- CPU class
 - CPU class is affected by number of cores, CPU clock speed, amount of cache memory and CPU virtualisation technology
- CPU core count
 - CPU core count affects virtual machine scalability and performance
- CPU over commitment
 - CPU over commitment occurs when the number of virtual CPUs assigned to the virtual machines exceeds the number of physical CPUs available to the host
- Virtual machine role priority
 - Virtual machine role priority determines how CPU resources are distributed across virtual machines

Data Centre - Compute

Example CPU Capacity Planning

- Win XP % Processor Time average 5% on 2 GHz core
- Requires 100 MHz per desktop (0.05 * 2 GHz)
- 100 desktops require 10 GHz processing (100 * 100 MHz)
- Add 10% to 25% overhead for virtualisation, display protocol, and buffer for spike
- 100 desktops achieved with 12.5 Ghz via 4 cores at >=3.125 GHz per core

Planning

Windows 7 400-600 MHz Windows 8 800MHz+

Data Centre - Compute

Example Memory Capacity Planning

- Vmware ESX Transparent Page Sharing to share master copy of memory pages among virtual machines
 - Windows XP 4 KB page sharing
 - Windows 7 1 MB page sharing

- Planning Without Memory Oversubscription
 - Windows 7-32 bit 1-1.5 GB
 - Windows 7-64 bit 2-3 GB
 - Windows 8 32/64
 - Small 1.5-2GB
 - Medium 2-3GB
 - Large 2-4GB

nVidia Graphics Processing Units (GPU) nVidia

GRID K1

GPU	4 Kepler GPUs	2 High End Kepler GPUs
CUDA cores	768 (192 / GPU)	3072 (1536 / GPU)
Memory Size	16GB DDR3 (4GB / GPU)	8GB GDDR5
Max Power	130 W	225 W
Form Factor	Dual Slot ATX, 10.5"	Dual Slot ATX, 10.5"
Aux power requirement	6-pin connector	8-pin connector
PCle	x16	x16
PCle Generation	Gen3 (Gen2 compatible)	Gen3 (Gen2 compatible)
# users	4 - 100 ¹	$2-64^{1}$
Watts per user	~ 1.5 W	~ 3.5 W
OpenGL	4.x	4.x
Microsoft DirectX	11	11
VGX Hypervisor support	Yes	Yes

¹ Number of users depends on software solution, workload, and screen resolution

Data Centre – Compute

GPUs in Virtual Desktop Environments

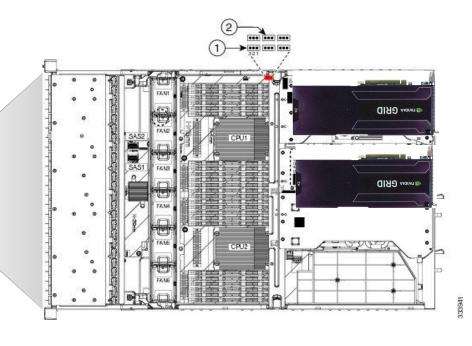
- GPU Pass-through
 - 1:1 dedicated GPU to user
 - Driver in the Virtual Machine
- GPU Sharing
 - Software virtualisation of the GPU or API Intercept
 - Driver in Hypervisor
- VGX
 - Hardware virtualisation of the GPU through the NVIDIA VGX Hypervisor
 - Driver in the Virtual Machine

Data Centre – Compute

Supported Hardware and Software

- Hardware C 240 M3/M4 and C 460 M4
- Server OS:
 - XenServer 6.0.2, 6.1
 - Windows Server 2012
 - VMWare ESX 5.1 View 5.2 / 6
- Virtualised Application Support (Shared GPU)
 - Citrix XenApp 6.5 with OpenGL 4.3 or XenApp 7.5
- Virtual Desktop Solutions (Shared GPU)
 - Citrix XenDesktop vGPU
 - Microsoft RemoteFX WS2012
 - Vmware Horizon View 5.2 vSGA
- Virtual Remote Workstation (Dedicated GPU)
 - Citrix XenDesktop 5.6 or 7 with HDX 3D Pro
 - Vmware horizon View 5.3 or higher with vDGA

- 4x Entry Level Kepler GPUs
- 768 NVIDIA CUDA cores
- 130W
- 6pin aux power connector



- 2x High-end Kepler GPUs
- 3072 NVIDIA CUDA cores
- 225W
- 8pin aux power connector

Cisco VDI

- UCS C240 M3 Rack Server is 2U, 2-socket server
- Supports up to 186 Virtual Desktops*

GPU support for VDI Profile

FOR REFERENCE

Vendor	GPU Pass-Through	GPU Sharing	VGX
CİTR _İ X	✓	XenApp only	✓ *(Future)
vm ware	√ (vDGA)	√ (vSGA)	X
Microsoft	√	√	X

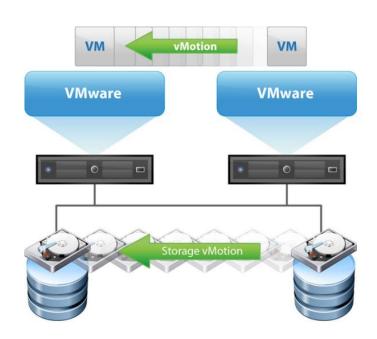
GPU Recommended Mode

FOR REFERENCE

User	No-GPU	GPU Sharing	GPU Pass-through
Designe	er X	X	✓
Power	X	X / √	√
Knowledg Worker Use		✓	✓

Overview

- Type
 - Virtual machine
 - User data
 - Profile
 - Virtual applications
- Storage
 - Storage Area Network (SAN)
 - Network Attached Storage (NAS)
 - Direct Attached Storage (DAS)
- File System
 - NT File System (NTFS)
 - File Allocation Table (FAT)
 - Extended File System (ext3)
 - Virtual Machine File System (VMFS)
 - Raw Device Mapping (RDM)
- New Technology Influences
 - Simplivity
 - AppVolumes


File Access

- Common Internet File System (CIFS) / Server Message Block (SMB)
- Network File System (NFS)
- Block Transport
 - Small Computer System Interface (SCSI)
 - Internet SCSI (iSCSI)
 - Fibre Channel (FC)
 - FC over Ethernet (FCoE)
 - SCSI over FC over IP (FCIP)
- Data Deduplication
 - NetApp File Level Flex Clone
 - VMware Linked Clone
 - Atlantis Computing iLio
 - Citrix Intellicache
 - VMware Storage Accelerator
 - Cisco WAAS Transport

Implementation Top Challenges

- Boot Storms
- vMotion
- DCI connectivity
- Provisioning/location/cache
- Right storage technology for the right job
- Reduction of Latency
- Backups
- Cloning
- Right Technology for the problem

Business Objectives

Workload Acceleration

Fast I/O

High Bandwidth

Low Latency

Data Reduction

Eliminate Redundant Data

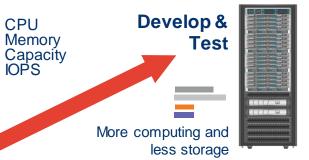
Efficient Storage Utilisation

Data Centre Efficiency

Reduce Energy Consumption

Reduce Floor Space Consumption

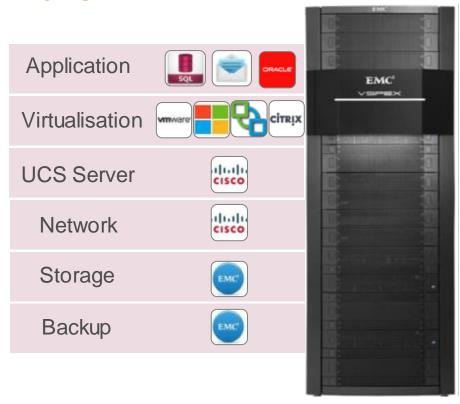
Reduce Management Overhead



Flexpod - Netapp

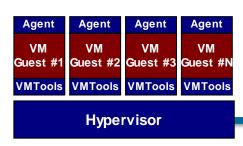
VDI 11/1 Higher performance blades and more input/output operations per second (IOPS) **Starting Out** Deploy entry system,

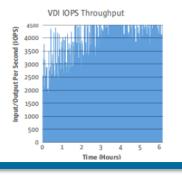
Production Balanced Infrastructure

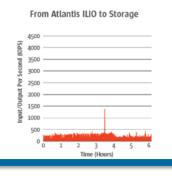


CPU

then scale up


EMC VSPEX




- Applications
 - Citrix VDI
 - VMware View
 - SharePoint
- Private Cloud
 - VMware vSphere
 - MSFT Hyper-V 2012
- Storage Back and Recovery
 - Avamar
 - NetWorker
 - DataDomain

Acceleration

Shared Storage

Cache Optimisations

- Atlantis Computing ILIO Read/Write acceleration (RAM option)
- Citrix Intellicache Accelerated read with local write
- VMware Storage Accelerator (VSA)

- Forms of optimisation (~90%)
 - Caching
 - Deduplication
 - Compression
 - Coalescing
 - Content-Awareness

Faster. Simpler.

114,950 IOPS 63.2 TB

180,000 IOPS 64 TB**



Cisco UCS Invicta Series

UCS Invicta Scaling System

UCS Invicta **Appliance**

Up to 1.2 Million IOPS** Up to 144 TB Raw

6 Node Configuration

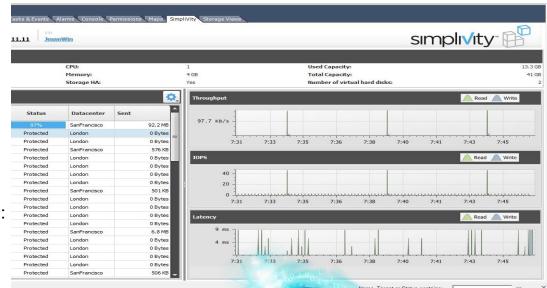
*Read IOPS **refer to earlier slide "A Note on Numbers"

- Scalability
- Modularity
- Application Acceleration
- Data Optimisation
- ✓ Multiple Workloads
- Tuning-Free Performance

Cisco UCS Invicta Appliance

Hardware Based upon the UCS C Series Platform	Software Invicta OS Version 5.0.0
 Host Connectivity Power-Fail Data Protection Flash Media 	 Flash Management Volume Management RAID Replication Snapshots Reporting Data Reduction Mode De-Duplication Thin Provisioning UCS Director Support iSCSI & Fibre Channel

Cisco UCS Invicta Appliance

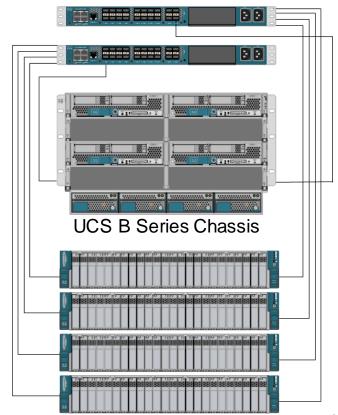

Mode	Application Acceleration	Data Reduction
Throughput (GBps)	1.2	1.2
100% Read IOPS	220,000	250,000
Blended IOPS (50%read/50%write)	205,000	180,000
100% Write IOPS	200,000	120,000
Latency (Microseconds)	<100	<100
Size	2 RU	2 RU
Max Capacity (TB)	24 TB Raw	64 TB**

OmniStack Integrated Solution with Cisco UCS

- Highly Available VM Infrastructure
- Scale Out Architecture in 2U modular increments
- Data Virtualisation Platform, powered by the OmniStack Accelerator Card: Dedupe, Compress, Optimise, At Ingest, Inline, In Real-Time, Once and Forever: Primary, Backup, Archive, WAN, Cloud
- VM-Centricity & Mobility: all policies, commands and info on per VM basis for backup, replication and DR
- Global Unified Management with one screen:
 VMware vCenter
- Infrastructure Management with Cisco UCS Manager

OmniCube

Accelerator[™]



OmniStack Integrated Solution with Cisco UCS

- 1. Configurable CPU up to 2 x 12 core Intel CPUs
- 2. Configurable RAM 256GB 768 GB RAM
- 3. Capacity:
 - a. 6 x 400GB SSD, RAID 5
 - b. 18 x 1TB HDD RAID 6 (2 disk groups)
 - c. 2 or 4 x 10GbE (Copper or SFP+) + 4 x 1GbE
- 4. Redundant power supplies, fans, hardware components and a highly available configuration = no single point of failure
- 5. SimpliVity OmniStack Software
- 6. SimpliVity OmniStack Accelerator Card

Planning

- Storage Requirements
 - Total number of desktops
 - Type of desktops (persistent, nonpersistent)
 - Size per desktop
 - OS for desktop
 - Worker workload profile
 - Storage growth horizon
 - Disaster recovery, backup, and data protection requirements
 - Size of NAS (CIFS) home directories
 - Roaming profiles
- Transport De-duplication
 - Transport workload mobility solutions
 - Shared storage replication acceleration (SRDF, SnapMirror, etc.)
 - Workload mobility acceleration (Clone, VMDK access, etc.)

Planning

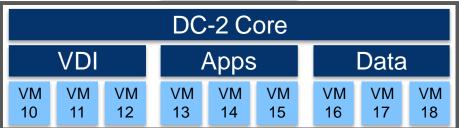
- Consider DAS for Non-Persistent Desktops
- Use shared storage with RAID and replication for persistent desktops and user data
- Use Linked Clones or File Level Flex Clones for storage capacity
- IOPS (4096 Bytes/IOP)
 - WinXP 5-10
 - Win7 10-20
 - 15K RPM drive 200 IOPS
 - SSD drive 10,000s IOPS
 - Reads versus writes
 - storage attachment cache/SSD/scaled
- Consider impact of antivirus
- Use storage caching to scale
 - Consider data redundancy levels

Data Centre – Network

Security Options

- Infrastructure placement
- Zoning by user/group, application, desktop, data
- Campus network security features
- Patching
 - Persistent desktop versus non-persistent desktop
- Virus scanning
 - Virtual machine virus scanning
 - VMSafe service in vSphere
 - NAS (file server) based virus scanning
 - Network or proxy based virus scanning (Scansafe/Ironport)
- Virtual desktop access
 - Direct internally or proxied externally

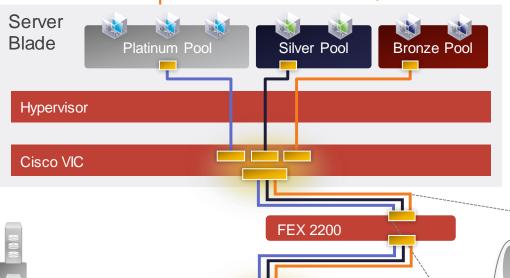
Data Centre – Network



Deployment Considerations

WAN Edge

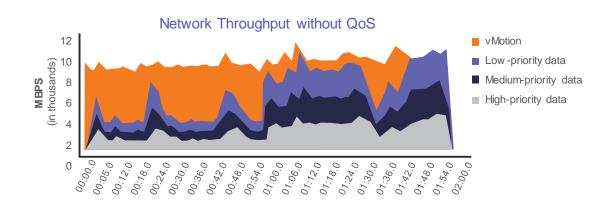
WAN Edge

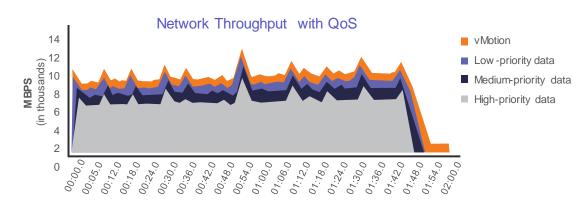

- Hosted virtual desktops in the server farm access considered east/west
- Hosted virtual desktops considered as a campus are north/south
- WAN edge in the access block is east/west?
- Data centre core is becoming an any to any transport
- It's all relative...

- Separate VDI from application environments
- Modular physical, network and compute infrastructure
- Predictable and repeatable scalability
- Campus security best practice
- IP address management

Cisco UCS with VM-FEX

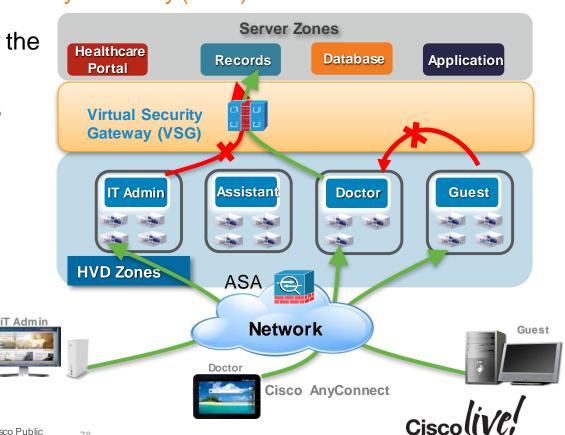
Virtual Desktop Prioritisation and QoS Pools


- QoS controls for tuning Storage and Network flows—Platinum, Gold, Silver, Bronze, best effort, FC QoS Classes
- Multi-cast optimisations
- Bandwidth controls
- Lossless Ethernet—drop/no drop
- Burst size controls



FI 6200

VDI Flow Prioritisation and QoS Pools



- User experience and SLA association to the virtual desktop
- Prioritisation among multiple virtual desktop pools
- Consistent virtual desktop behaviour with vMotion, backup and other data centre actions
- Burst controls, and other traffic shaping controls
- Separation of cluster management traffic from desktop traffic
- Up to 80 Gb/s bandwidth per server to prevent HOL blocking

Data Centre - Network

Securing VDI with Cisco Virtual Security Gateway (VSG)

- Persistent virtual workspace for the doctor
- Flexible workspace for Doctor's assistant
- Maintain compliance while supporting IT consumerisation
- Security Enforcement
 - ACLs with logging
 - Port Profile Port Security
 - DHCP Snooping
 - Dynamic Arp inspection
 - IP Source Guard

Data Centre

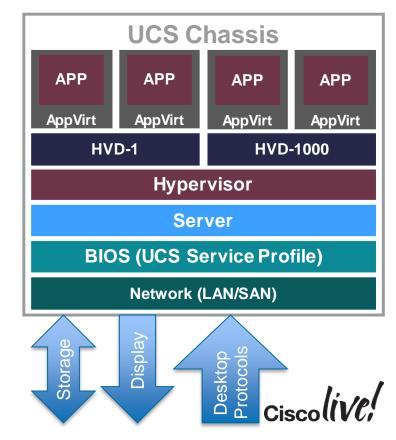
Anti-Virus

- Virus scan is an essential component of the Virtual Workspace
- Traditional AV software impacts HVD densities and hence the TCO
- Storage IOPS requirements and Login/Boot/AV Storms should be considered in the design apart from HVD density impact

18% impact on HVD Density XenDesktop 5/ ESXi 4.1, Win 7 32b/1.5G/20G

(t)	TREND MICRO

Workload Profile	AV Scan Policy	HVD Density
Knowledge Worker (KW) only	N/A	110/110
KW with MoveAV 1.5	Default	90/90



Data Centre – Storage

Sample Bandwidth Planning

- Storage (in and outbound)
 - 20 IOPS per desktop at 4K Bytes EA
 - 671 Kbps EA (assume 1 Mbps)
 - 1 Gbps for 1000 HVDs in UCS blade chassis
 - Assume 1 Mbps per HVD
- Network Display (mostly outbound)
 - Assume 1 Mbps per desktop
 - 1 Gbps for 1000 HVDs in UCS blade chassis
- Desktop Protocols (mostly inbound)
 - Estimate 8 Mbps which opens 25MB in 25 seconds and handles streaming and interactive video
 - 8 Gbps for 1000 HVDs in UCS blade chassis
- Total
 - 10 Mbps per HVD for storage, display, and desktop protocols
 - 10 Gbps for 1000 HVDs in UCS blade chassis

Cisco Innovation

Continuous product development and improvement for VDI

- UCS
 Mini: http://www.cisco.com/c/en/us/produc
 ts/servers-unified-computing/ucsmini/index.html
- UCS –
 E:http://www.cisco.com/c/en/us/products/ servers-unified-computing/ucs-e-seriesservers/index.html
- UCS Invicta Scaling System: http://www.cisco.com/c/en/us/sup port/servers-unified-computing/ucsinvicta-series/tsd-products-supportseries-home. html

ACI and VDI

The benefits of running VDI on Application Centric Infrastructure

Implicit whitelist access/zoning

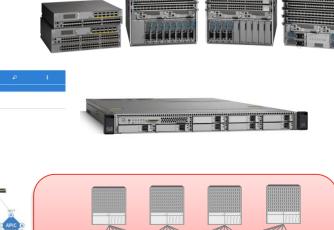
Fabric topology scaling

Very low latency fabric

Abstract Object Unification

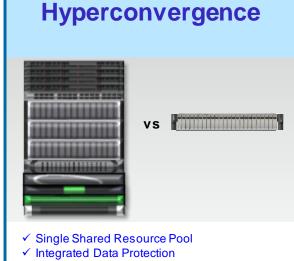
L4-L7 Services integration

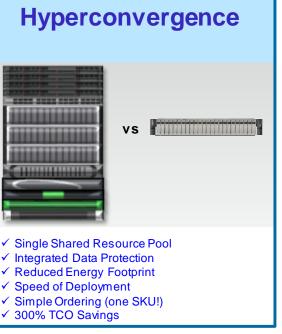
- UCS Director integration
- Multi-hypervisor

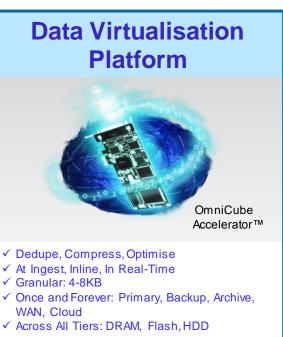

BRKVIR-2002

- One touch point for DC network
- Application visibility

O C > M C O.

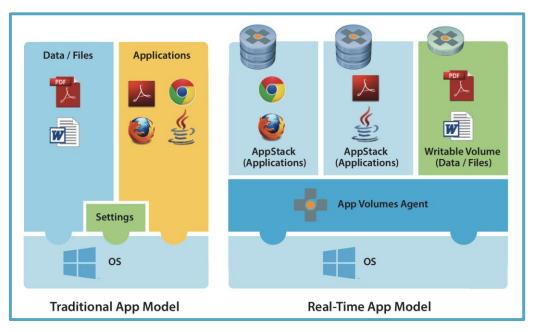

Cisco Public





SimpliVity's Core Innovations with Cisco UCS C-Series Systems

- √ VM-Centricity & Mobility: all policies, commands and info on per VM basis
- ✓ All policy abstract from underlying infrastructure
- ✓ One Screen: VMware vCenter
- ✓ Global Scale-Out and Scale-In

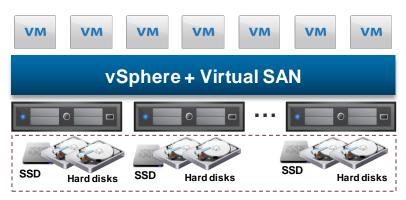

simplifyinfrastructure.

simplifydata.

VMware

Acquisition of CloudVolumes now AppVolumes with Horizon

Now imagine this stack:


- VMware Horizon
- VMware AppVolumes
- VDI Windows 7+
- VMware ESX Hypervisor
- Cisco UCS C, B or Mini
- Simplivity OmniStack
- Cisco UCS Invicta

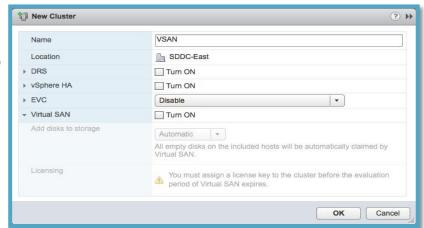
REFERENCE:

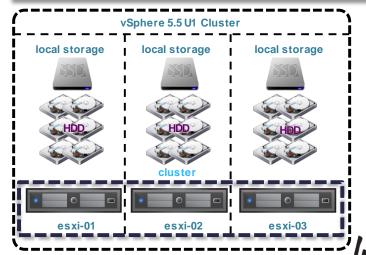
http://www.vmware.com/files/pdf/techpaper/vmware-horizon-view-app-volumes-deployment-guide.pdf

VMware Virtual SAN

Hypervisor-Converged storage platform

Virtual SAN Shared Datastore




- Software-defined storage software solution
- Aggregates locally attached storage from each ESXi host in a cluster.
- Flash optimised storage solution.
- VM-Centric data operations and policy driven management principals.
- Resilient design based on a Distributed RAID architecture
 - No single point of failure
- Fully integrated with vSphere
- Scale up and Scale out architecture granular and linearly storage, performance and compute scaling capabilities
 - Per magnetic disks for capacity
 - Per flash based device for performance
 - Per disk group for performance and capacity
 - Per node for compute capacity

Virtual SAN Datastore

- Virtual SAN is an object store solution that is presented to vSphere as a file system.
- The object store mounts the VMFS volumes from all hosts in a cluster and presents them as a single shared datastore.
 - Only members of the cluster can access the Virtual SAN datastore
 - Not all hosts need to contribute storage, but its recommended.
- Virtual SAN uses the concept of disk groups to pool together flash devices and magnetic disks as single management constructs.
- Disk groups are composed of at least 1 flash device and 1 magnetic disk.
 - Flash devices are use for performance (Read cache + Write buffer).
 - Magnetic disks are used for storage capacity.
 - Disk groups cannot be created without a flash device.

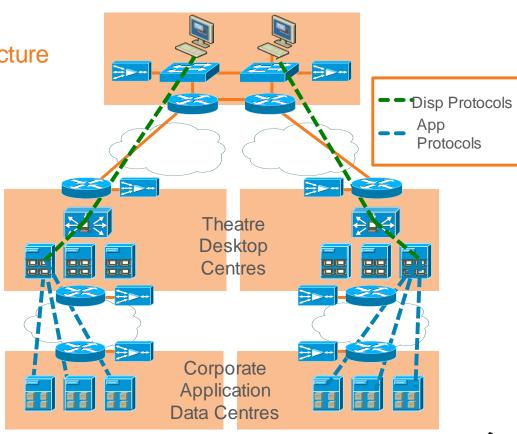
Strategy

Approach

- Centralised when you can
 - Communications Email
 - Productivity Office, Wiki
 - Information Management File, Sharepoint, iDisk, etc.
 - Business applications Client/Server
 - Business intranet web
- Local when you must
 - Communications
 - IP Telephony (interactive softphone)
 - Video on demand (native encoding with local caching and prepositioning)
 - Video streaming (broadcast)
 - Rich media web
 - Experience
 - Branch split VPN with local web access
 - Print

Strategy

Considerations


- Business
 - Identify worker types (i.e. Task, Knowledge, Power, etc.)
 - Pursue when it makes business sense
 - Address security and compliance requirements
 - Consider the workspace (not just a desktop)
 - Consider the employ onboarding and off-boarding workflow
- Design
 - Fault domains
 - Disaster recovery
 - Shared storage scalability
 - Application concurrency
 - Per application requirements (Containerisation?)
 - Rich media or graphic intensive applications have many caveats
 - Stateless desktop is the goals
 - Which layer solves which problem? eg Linked Clones versus De-dupe versus Simplivity?
 - How best to leverage gross building blocks eg VSAN

Architecture

Large Scale Virtual Desktop Architecture

- Branch
 - Thin Clients or display protocol clients
 - WAN Acceleration (1 connection per HVD/HVA)
- Desktop Data Centre
 - WAN Acceleration From Thin Client (1 connection per HVD/HVA)
 - Broker
 - Virtual Desktops
 - Limited applications
 - WAN Acceleration to Application (10 connections per HVD)
- Application Data Centre
 - WAN Acceleration From HVD
 - Centralised applications

Architecture

Fault Domains

- Client 1 user
- Branch Switch Up to 250
- Building or WAN 2 to 1,000
- SLB 2,000 to 20,000

- Broker Up to 1000
- UCS Blade Up to 332
- UCS Chassis Up to 1,328
- Storage 1 to 10,000

Plan

Objectise

Physical and Abstract Object Control and Orchestration

Unified Management

- UCS Director
- UCS Manager
- UCS Central
- Treat Blades an Rack mount the same
- Profile based management

Build

Simplify

Abstracted Object Definition and Implementation

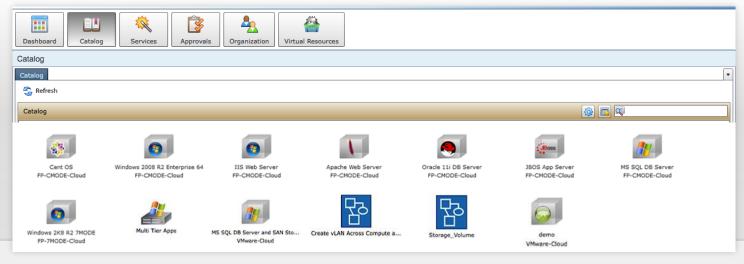
Unified Compute

- Converged Network (including FCoE)
- Wire once
- Bandwidth scalability
- Invicta Integration (IOPS)
- Cache Technologies
- GPU Capacity

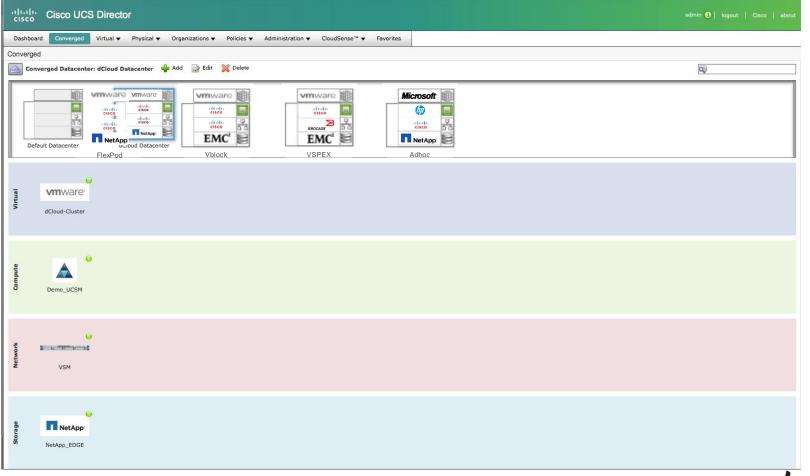
Operate

Orchestrate

Abstracted Object Gating and Connection


Unified Fabric

- Fabric based Architecture
- ACI
- Nexus 1000V
 - Citrix Netscaler
 - ASA
 - VSG
- DCI Options:
 - Optical
 - MPLS
 - OTV
 - Fabricpath
 - InterCloud
 - Stretch Fabric


Cisco UCS Director

Self-Service Portal for Infrastructure Services

- Self-serve provisioning of IT infrastructure
- Request for Stateless server from Catalog
- Role-based access
- Service delivered in Minutes

Reports

Workflow Service Status

Status			
			🥞 Ref
▼ Overview		Current status for the service request.	
Request ID	1863	15) Create Network Policy	11/12/2012 23:09:00
Request Type	Admin Workflow	(16) Create Port Profile	11/12/2012 23:10:04
Workflow Name	SMT Workflow with new Resource Pool	\checkmark	
Request Time	11/12/2012 22:55:50 GMT-0800	Update Port Profile	11/12/2012 23:10:58
Request Status	Complete	Add Virtual Adapter	11/12/2012 23:11:12
Comments		18) Add Virtual Adapter	
▼ Ownership		(19) Create Flexible Volume	11/12/2012 23:11:22
Initiating User	admin	(20) Create IPSpace	11/12/2012 23:11:28
		(21) Create vLAN Interface	11/12/2012 23:11:35
		Assign VLAN to IPSpace	11/12/2012 23:11:41
		Create vFiler using ONTAP	11/12/2012 23:12:53
		Create vFiler Setup	11/12/2012 23:13:02
		25) Assign vFiler to Group	11/12/2012 23:13:10
		26) Add Storage to vFiler	11/12/2012 23:13:21
		27) Add HostNode to vFiler NFS Export	11/12/2012 23:13:24
		(28) Mount NFS Datastore	11/12/2012 23:14:03
		Create Storage Policy	11/12/2012 23:14:06

Quick Links

For Reference - Cisco Validated Designs: http://www.cisco.com/go/designzone

- Desktop Virtualisation with Citrix: http://www.cisco.com/c/en/us/solutions/enterprise/data-center-designs-virtualization/landing_vdi_citrix.html
- Desktop Virtualisation with VMWare: http://www.cisco.com/c/en/us/solutions/enterprise/data-center-designs-virtualization/landing_vdi_view.html
- Cisco and Simplivity: http://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/unified-computing/whitepaper_c11-733376.pdf
- Cisco Desktop as a Service: http://www.cisco.com/c/en/us/solutions/data-center-virtualization/desktop-as-a-service-solution/index.html
- Cisco Office in a Box: VDI: http://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-e-series-servers/solution_overview_c22-726883.html
- Cisco VSAN Ready Nodes C-Series: http://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/desktop-virtualization-solutions-vmware-horizon-view/whitepaper C11-732332.pdf
- Cisco UCS Director: http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-invicta-series-solid-state-system/index.html

Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2015 T-Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site
 http://showcase.genie-connect.com/clmelbourne2015
- Visit any Cisco Live Internet Station located throughout the venue

T-Shirts can be collected in the World of Solutions on Friday 20 March 12:00pm - 2:00pm

Learn online with Cisco Live!
Visit us online after the conference for full access to session videos and presentations. www.CiscoLiveAPAC.com

Plan, Build, Operate

Example to suit DevOps model

Multiple requests from user for: ID, Desktop, Phone, Email, Applications etc. InfoSec Creates ID Server Admin Clone VM Admin Configure PVS & DDC Desktop Admin Install Applications Communication Group provision's Phone Secure it Manual Process Ready for use... take several days **Before:** Conventional VDI Manual provisioning

Single request from user, using portal Approved by Manager Order goes to Orchestrator Orchestrator creates User ID **Orchestration Configures** VMWare. Citrix and UCS With Automation Install Applications Secure it **Automated** Self-service Ready for use... On-demand within minutes... After:

- Hard to control utilisation
- High provisioning & ops cost
- Extended provisioning time
- Configuration risk

Automated VDI Solution

- Self-service; automated provisioning
- Elasticity (capacity-on-demand)
- Optimised provisioning & ops cost
- Rapid provisioning
- Increased Resiliency and Availability

Quality of Service in a Cisco VDI Network

Protocol	TCP/UDP Port	DSCP /CoS Value
Desktop Virtualisation Protocols		
RDP7	TCP 3389	DSCP af21/CoS 2
PCoIP*	TCP & UDP 50002 TCP	DSCP af21/CoS 2 DSCP
	& UDP 4172	af21/CoS 2
ICA/HDX		
Session	TCP 1494	DSCP af21/CoS 2
Session Reliability	TCP 2598	DSCP af21/CoS 2
Web Services	TCP 80	DSCP af21/CoS 2
USB Redirection (PCoIP)	TCP 32111	DSCP af11/CoS 1
MMR	TCP 9427	DSCP af31/CoS 4
Other Protocols found within Cisco VDI		
Network-based Printing (CIFS)	TCP 445	DSCP af11/CoS 1
UC Signalling (SCCP)	TCP 2000	DSCP cs3/CoS 3
UC Signalling (SIP)	TCP 5060	DSCP cs3/CoS 3
UC Signalling (CTI)	TCP 2748	DSCP cs3/CoS 3
UC Media (RTP, sRTP)	UDP 16384 - 32767	DSCP ef/CoS 5

Display protocols obscure multiple traffic types in a single TCP connection
 Cisco

Quality of Service in a Cisco VXI Network

Ports Used During Classification for QoS

```
ip access-list RDP
permit tcp any eq 3389 any
ip access-list PCoIP-UDP
permit udp any eq 50002 any
ip access-list PCoIP-TCP
permit tcp any eq 50002 any
ip access-list PCoIP-UDP-new
permit udp any eq 4172 any
ip access-list PCoIP-TCP-new
permit tcp any eq 4172 any
ip access-list ICA
permit tcp any eq 1494 any
ip access-list View-USB
permit tcp any eq 32111 any
```

```
ip access-list MMR
permit top any eq 9427 any
ip access-list NetworkPrinter
permit ip any host 10.1.128.10
permit ip any host 10.1.2.201
ip access-list CUPCDesktopControl
permit tcp any host 10.0.128.125 eq 2748
permit tcp any host 10.0.128.123 eq 2748
```

Cisco's Nexus 1000v deployed with its ability to safeguard against DHCP snooping, dynamic ARP inspection and IP source guard

Quality of Service in a Cisco VXI Network

class-map type qos match-any **CALL-SIGNALLING** match access-group name **CUPCDesktopControl**

class-map type qos match-any MMR-STREAMING match access-group name MMR

class-map type qos match-any TRANS-DATA match access-group name RDP match access-group name PCoIP-UDP match access-group name PCoIP-TCP match access-group name PCoIP-UDP-new match access-group name PCoIP-TCP-new

class-map type qos match-any **BULK-DATA** match access-group name **View-USB** match access-group name **NetworkPrinter**

policy-map type gos pmap-HVDPort class CALL-SIGNALLING set cos 3 set dscp cs3 ! dscp = 24class MMR-STREAMING set cos 4 set dscp af31 ! dscp = 26class TRANS-DATA set cos 2 set dscp af21 ! dscp = 18class **BULK-DATA** set cos 1 set dscp af11 ! dscp = 10

Quality of Service Validation with MMR

 Viewing QoS Policy Statistics DC-WAN#show policy-map interface

> GigabitEthernet0/0 Service-policy input: HQ-LAN-EDGE-IN

Class-map: MMR-STREAMING (match-any) 3532 packets, 5249960 bytes 30 second offered rate 9000 bps, drop rate 0 Match: dscp af31 (26) af32 (28) af33 (30) 0 packets, 0 bytes 30 second rate 0 bps Match: access-group name MMR 3532 packets, 5249960 bytes 30 second rate 9000 bps QoS Set dscp af31 Packets marked 3532

Serial0/0/0:0
Service-policy output: WAN-EDGE

Class-map: MMR-STREAMING (match-any) 5456 packets, 8052828 bytes 30 second offered rate 393000 bps, drop Match: dscp af31 (26) af32 (28) af33 (30) 5456 packets, 8052828 bytes 30 second rate 393000 bps Match: access-group name MMR 0 packets, 0 bytes 30 second rate 0 bps Queueing queue limit 64 packets (queue depth/total drops/no-buffer drops) 0/0/0 (pkts output/bytes output) 5456/8052828 bandwidth 5% (76 kbps) Exp-weight-constant: 9 (1/512) Mean queue depth: 25 packets

Citrix ICA QoS

- **Branch Considerations**
 - Network QoS implications
 - Display Protocol Adaptiveness
 - HDX enhancements in XD5.6
 - Streaming video handling client or server fetch, client or server rendering
 - Dynamic Adjustments based on BW Available
 - Multistream-ICA that allows for 4 TCP stream ports and 1 UDP stream visibility into the desktop protocol allows for appropriate QoS handling

Type of Traffic (multi-stream ICA Priority)	Ports	Suggested QoS (DiffServ Classes) on Network
UDP	16500 -16509	EF
TCP: Realtime (priority very high)	Custom	AF4x
TCP: Interactive (priority high)	2598 (original)	AF4x
TCP: Bulk (priority medium)	Custom	AF21
TCP: background (priority low)	Custom	BE

#