

TOMORROW starts here.

Data Centre Fabric Design: Leveraging Network Programmability and Orchestration

BRKDCT-3641

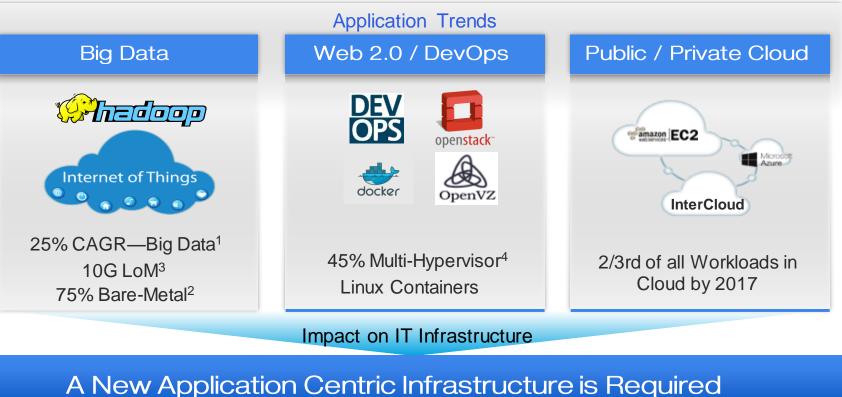
Brenden Buresh

DC Technical Solutions Architect

#clmel

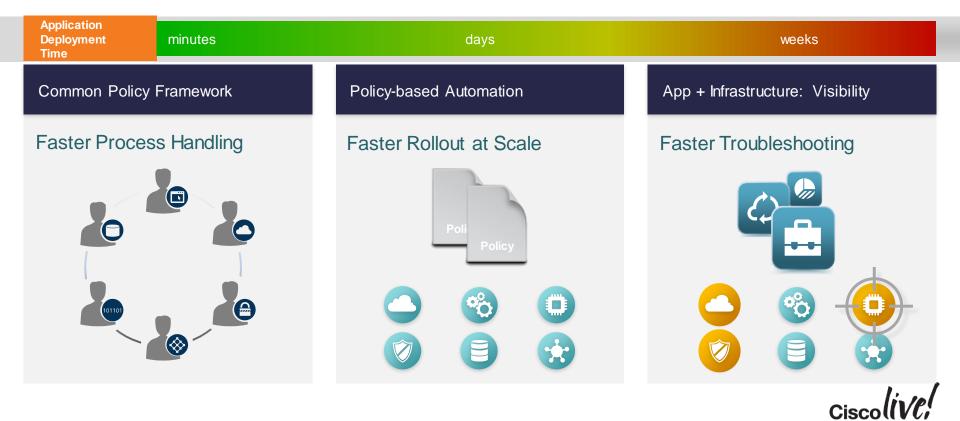
Agenda

- Introduction Data Centre Trends
- 2-Tier Leaf Spine Architecture
- VXLAN Overview & Primer
- DevOps & Network Programmability
- Controllers & Orchestration Tools
- Conclusion Data Centre Design Transition



Introduction – Data Centre Trends

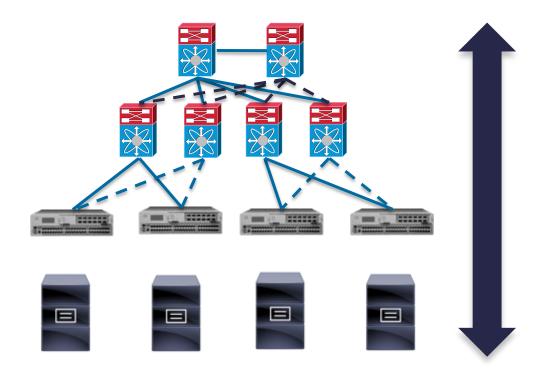
53



New Data Centre Trends Cause Disruptions

Benefits of the Cisco Approach – Application Agility Delivery Agility Across the Application Lifecycle – Day Zero and Beyond

6


2-Tier Leaf Spine Architecture

BBIN

53

Networking Today

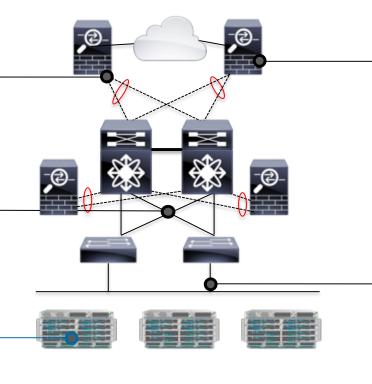
Designed for North / South campus traffic

East / West traffic is inefficient & can be unpredictable

Bandwidth & latency is not deterministic

Networking Challenges

Poor Scalability


Hard to insert resources, power/port constraints, "fat" flows, expansion

Low Versatility

Complex traffic engineering, VLAN/DRP, suboptimal paths

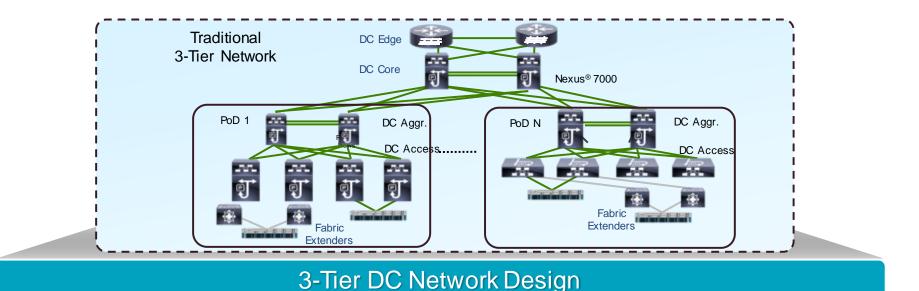
Physical Network Limits Applications

Need intelligence to abstract application flows

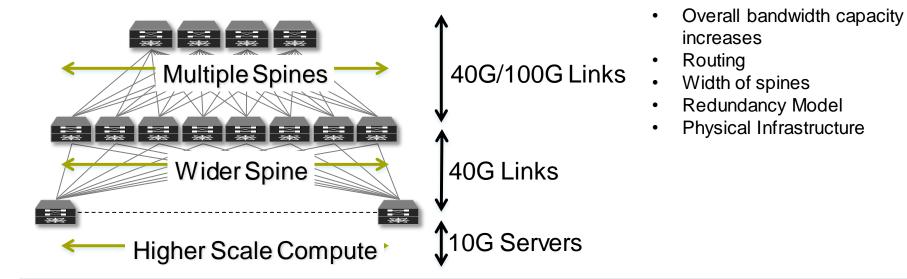
9

Policy Set Complication

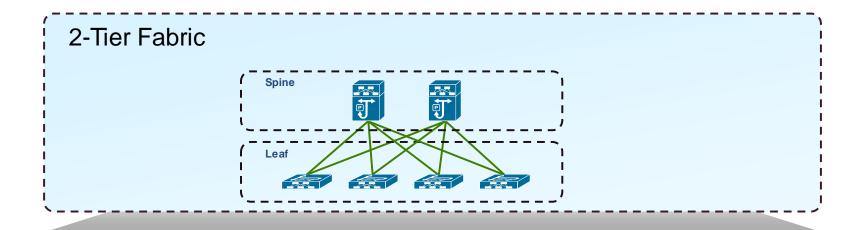
Overlapping rule sets, complex inheritance, oversubscription


Cost of East-West Services

Multi-pass inspections, "slow" network traversal, "hairpinning", waste of compute cycles

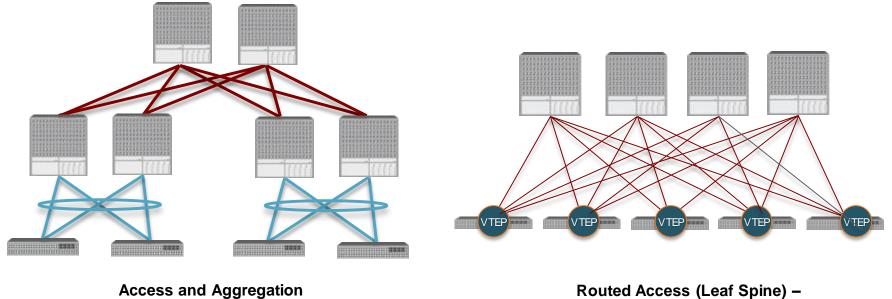

Today's DC Challenges:

Why Network Provisioning is Slow: Traditional 3-Tier Network Design



DC Fabric Trends

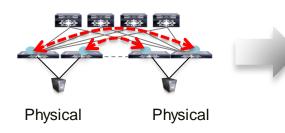
Early Integration of 100G north-south focused – DC edge


Solving Today's DC Challenges: Architecture: Spine-Leaf Fabric Design

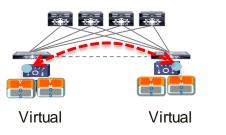
Spine-Leaf Fabric DC Network Design (Clos Fabric)

Cisco

Three-Tier vs. Leaf Spine

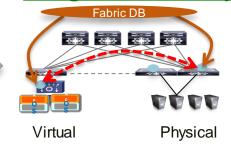

vPC

Routed Access (Leaf Spine) – VxLAN


Types of Overlay Edge Devices

Network Overlays

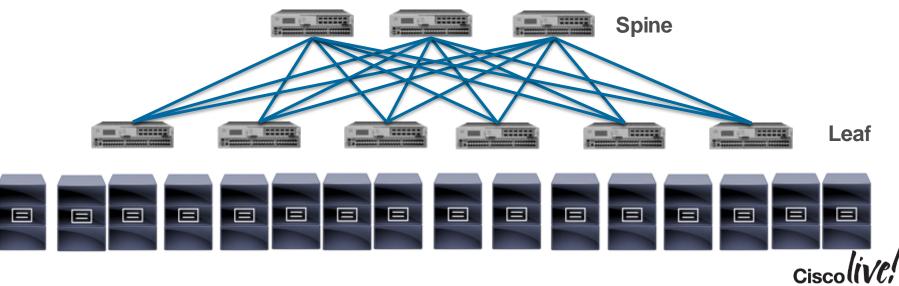
- Router/switch end-points
- Protocols for resiliency/loops
- Traditional VPNs
- OTV, VXLAN, VPLS, LISP


Host Overlays

- Virtual end-points only
- Single admin domain
- VXLAN, NVGRE, STT

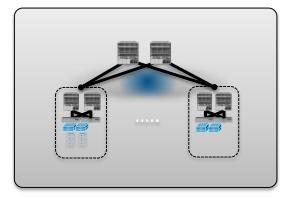
Tunnel End-points

Integrated Overlays

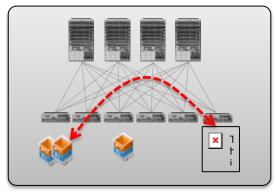


- Physical and Virtual
- Resiliency + Scale
- X-organisations/federation
- Open Standards

Application Networking Infrastructure



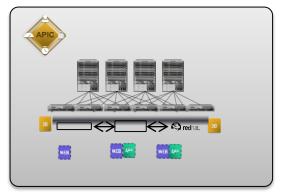
Modernising the Data Centre – P+V+C


High Performance Secure Foundation – Open Programmable Interfaces

EXISTING 2/3-TIER DESIGNS

Modernised Operating System Programmable Open APIs Any 3rd Party Controller Linux Containers

PROGRAMMABLE SDN OVERLAY MODEL


Integrated Network Virtualisation (no Gateways)

VXLAN Bridging, Routing, BGP

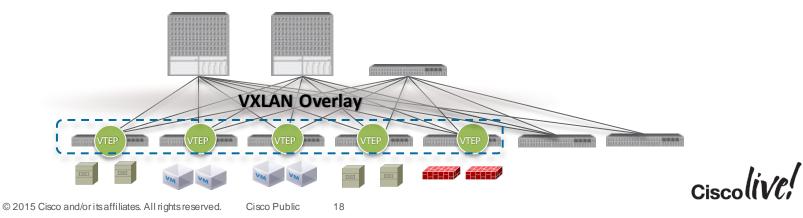
Linux Based DevOps

APPLICATION CENTRIC INFRASTRUCTURE

Any Hypervisor – No VM Tax Physical & Virtual Open API's & Controller Group Based Policy Model

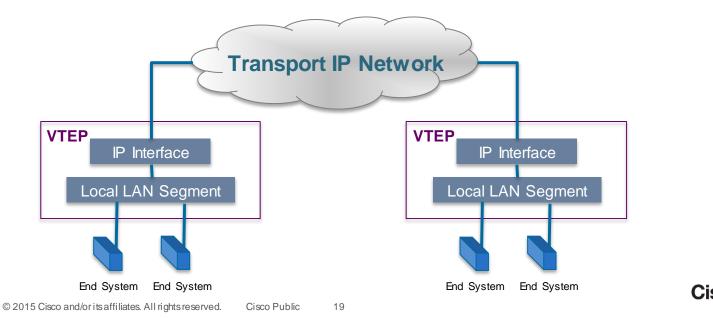
VXLAN Overview and Primer

DOM

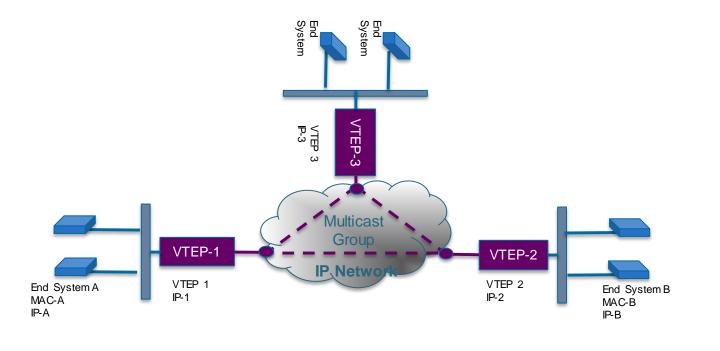

53

Why VXLAN Overlay Was Created?

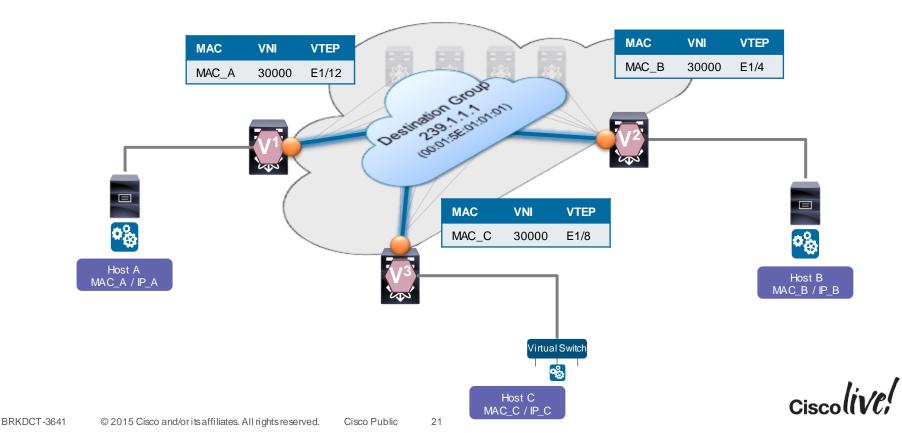
BRKDCT-3641


Customer Needs	VXLAN Delivered		
Any workload anywhere – VLANs limited by L3 boundaries	Any Workload anywhere- across Layer 3 boundaries		
VM Mobility	Seamless VM Mobility		
Scale above 4k Segments (VLAN limitation)	Scale up to 16M segments		
Secure Multi-tenancy	Traffic & Address Isolation		

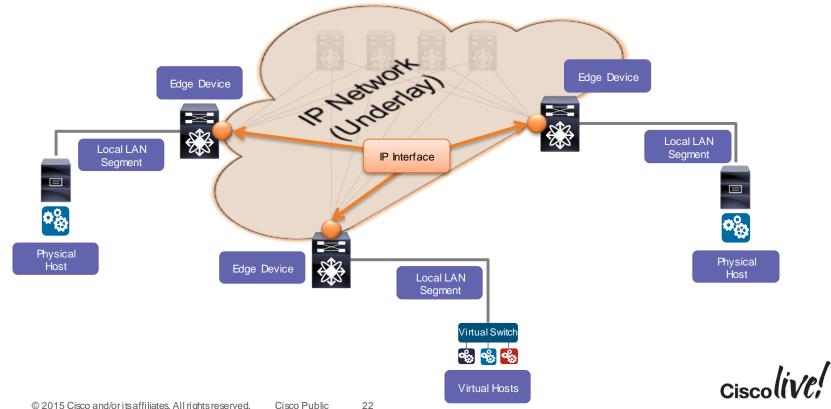
VXLAN VTEP


BRKDCT-3641

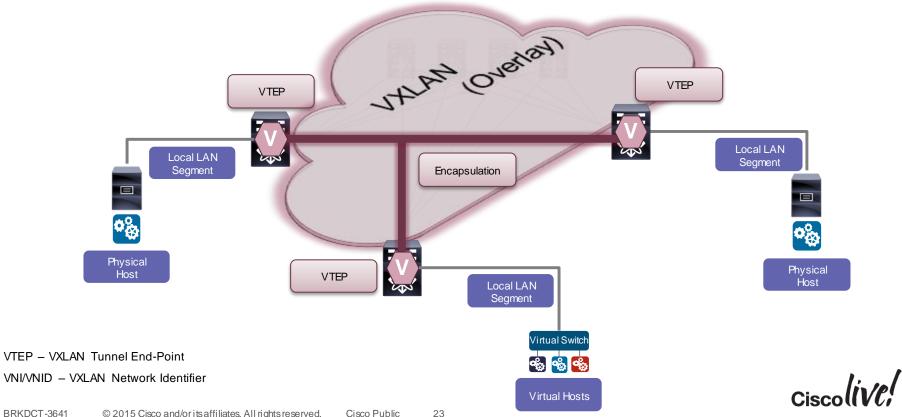
VXLAN terminates its tunnels on VTEPs (Virtual Tunnel End Point). Each VTEP has two interfaces, one is to provide bridging function for local hosts, the other has an IP identification in the core network for VXLAN encapsulation/decapsulation.



VXLAN BUM Traffic over Transport Multicast


VXLAN BUM (Broadcast, Unknown Unicast and Multicast) traffic is transported over the VXLAN segment control multicast group.

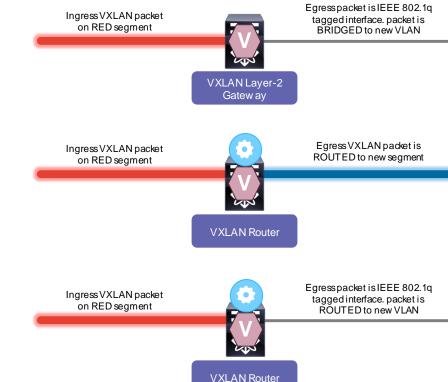
VXLAN Flood and Learn



VXLAN Taxonomy (1)

BRKDCT-3641 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public

VXLAN Taxonomy (2)

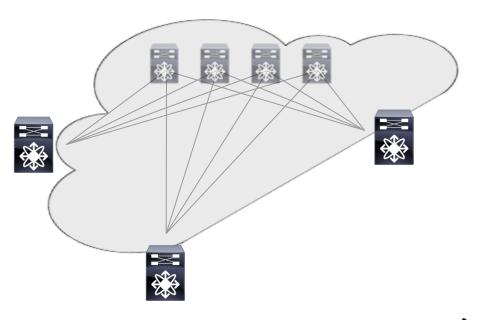

BRKDCT-3641 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public

VXLAN Gateway Types VXLAN Taxonomy

VXLAN to VLAN Bridging
 – (Layer-2 Gateway)

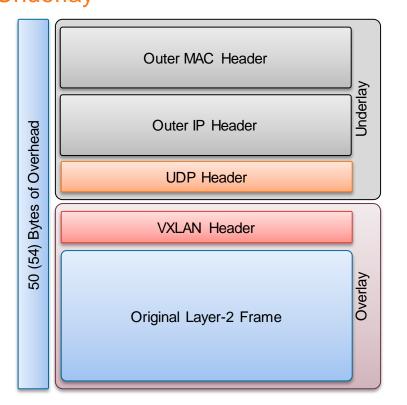
VXLAN-to-VXLAN Routing

- (Layer-3 Gateway)


Cisco

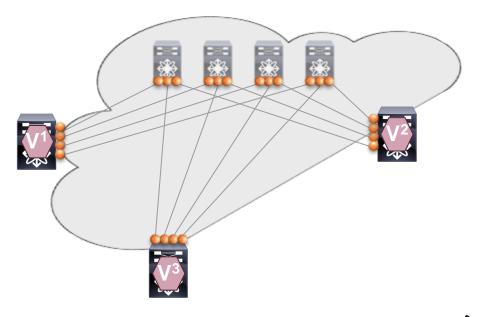
VXLAN-to-VLAN Routing

 (Layer-3 Gateway)


VXLAN Deployment Considerations Underlay

- MTU and Overlays
- Unicast Routing Protocol and IP Addressing
- Multicast for BUM* Traffic Replication

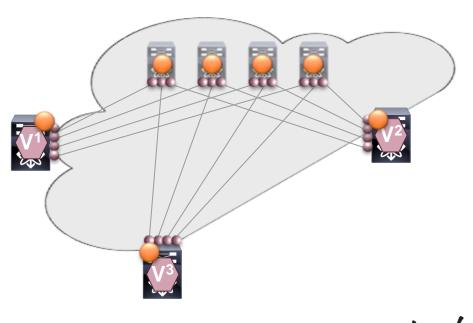
MTU and VXLAN



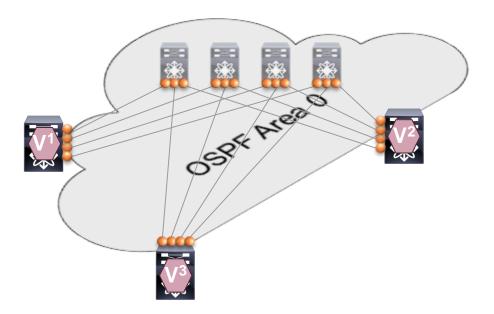
- VXLAN adds 50 Bytes to the Original Ethernet Frame
- Avoid Fragmentation by adjusting the IP Networks MTU
- Data Centres often require Jumbo MTU; most Server NIC do support up to 9000 Bytes
- Using a MTU of 9216* Bytes accommodates VXLAN Overhead plus Server max. MTU
- No Fragmentation Needed

*Cisco Nexus 5600/6000 switches only support 9192 Byte for Layer-3 Traffic

Building Your IP Network – Interface Principles Underlay

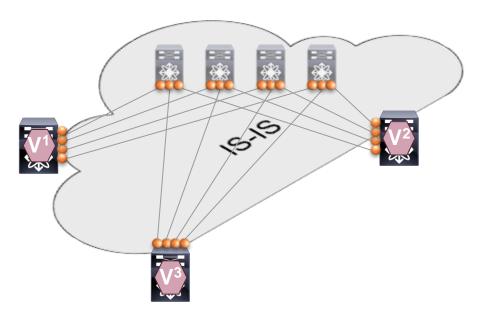

- Know your IP addressing and IP scale requirements
 - Best to use single Aggregate for all Underlay Links and Loopbacks
 - IPv4 only
 - For each Point-2-Point (P2P) connection, minimum /31 required
 - Loopback requires /32
- Routed Ports/Interfaces
 - Layer-3 Interfaces between Spine and Leaf (no switchport)
- VTEP uses Loopback as Source-Interface

IP Unnumbered – Simplifying the Principles Underlay

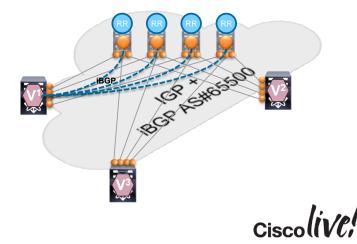

- IP Unnumbered Single IP Address for multiple Interfaces
- Well-Known from Serial Interfaces (back in time)
- Used for Layer-3 Interfaces between Spine and Leaf (no switchport)
- For each Switch in the fabric, single IP address is sufficient
 - Loopback for VTEP
 - IP Unnumbered from Loopback for routed Interfaces

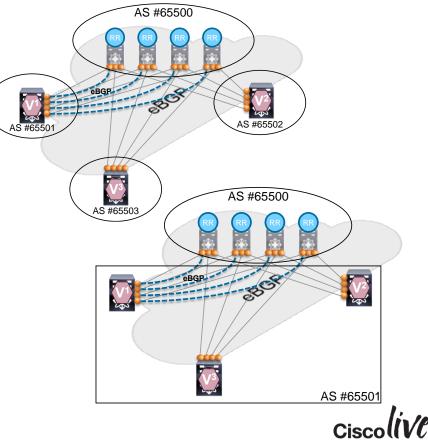
Check Platform & Release Support for Ethernet IP Unnumbered

Building IP Network – Routing Protocols: OSPF Underlay


- OSPF watch your Network type
 - Network Type Point-2-Point (P2P)
 - Preferred (only LSA type-1)
 - No DR/BDR election
 - Suits well for routed interfaces/ports (optimal from a LSA Database perspective)
 - Full SPF calculation on Link Change
 - Network Type Broadcast
 - Suboptimal from a LSA Database perspective (LSA type-1 & 2)
 - DR/BDR election
 - Additional election and Database Overhead

Building IP Network – Routing Protocols: IS-IS Underlay


- IS-IS what was this CLNS?
 - Independent of IP (CLNS)
 - Well suited for routed interfaces/ports
 - No SPF calculation on Link change; only if Topology changes
 - Fast Re-convergence
 - Not everyone is familiar with it

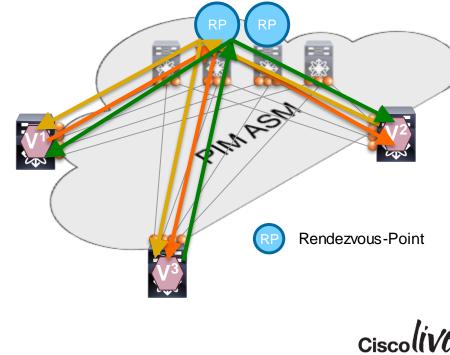

Building IP Network – Routing Protocols: iBGP Underlay

- iBGP + IGP = The Routing Protocol Combo
 - IGP for underlay topology & reachability (e.g. IS-IS, OSPF)
 - iBGP for VTEP (loopback) reachability
 - iBGP route-reflector for simplification and scale
 - Requires two routing protocols

Building IP Network – Routing Protocols: eBGP Underlay

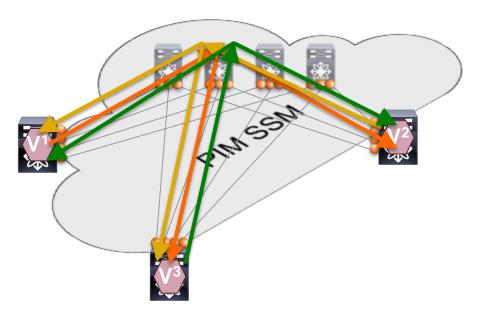
- eBGP
 - eBGP Peer is IP interface
 - Loopback would require additional IGP and eBGP multi-hop
 - Multiple Autonomous-Systems (AS)
 - Minimum amount of AS is two
 - Many BGP Neighbours
 - For each neighbouring p2p interface
 - AS Path
 - Src and Dst AS might be same
 - No Route-Reflector
 - But next-hop needs to be unchanged

Multicast Routing Underlay


May use PIM-ASM or PIM-BiDir (Different hardware has different capabilities)

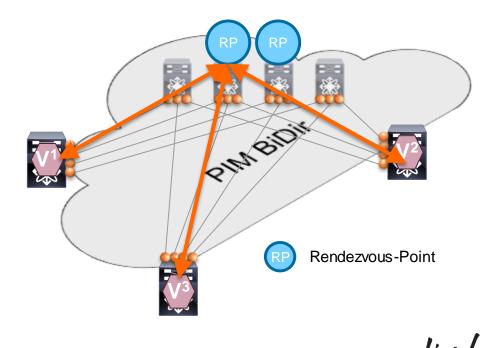
	Nexus 1000v	Nexus 3000	Nexus 5600	Nexus 7000/F3	Nexus 9000	ASR 1000 CSR 1000	ASR 9000
Multicast Mode	IGMP v2/v3	PIM ASM	PIM BiDir	PIM ASM / PIM BiDir	PIM ASM	PIM BiDir	PIM ASM / PIM BiDir

- Spine and Aggregation Switches make good Rendezvous-Point (RP) Locations in Topologies
- Reserve a range of Multicast Groups (Destination Groups/DGroups) to service the Overlay and optimise for diverse VNIs
- In Spine/Leaf topologies with lean Spine
 - Use multiple Rendezvous-Point across the multiple Spines
 - Map different VNIs to different Rendezvous-Point for simple load balancing measure
 - Use Redundant Rendezvous-Pint
- Design a Multicast Underlay for a Network Overlay, Host VTEPs will leverage this Network


Multicast Enabled Underlay: PIM ASM Underlay

- PIM Sparse-Mode (ASM)
- Redundant Rendezvous-Point using PIM Anycast-RP or MSDP
- Source-Tree or Unidirectional Shared-Tree (Source-Tree shown)
 - Shared-Tree will always use RP for forwarding
- 1 Source-Tree per Multicast-Group per VTEP (each VTEP is Source & Receiver)
- Example from depicted topology
 - 3 VTEPs sharing same VNI and Multicast-Group mapping (single Multicast-Group)
 - 3x Source-Tree (1 per VTEP per Multicast-Group)

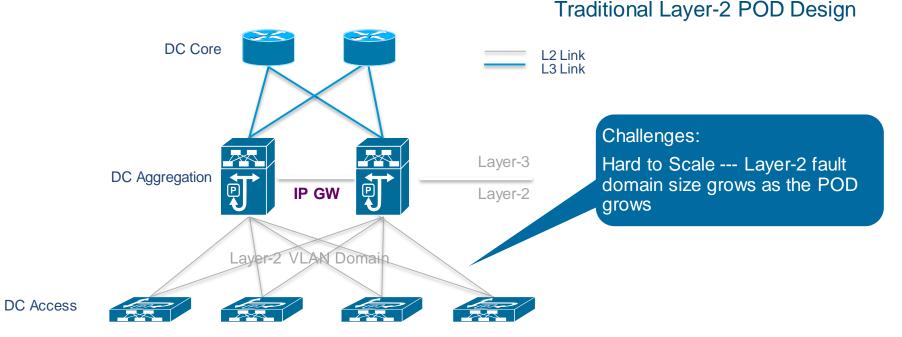
Multicast Enabled Underlay: PIM SSM Underlay


- PIM Source Specific Multicast (SSM)
- No Rendezvous-Point required
- Source-Tree or Unidirectional Shared-Tree
- 1 Source-Tree per Multicast-Group per VTEP (each VTEP is Source & Receiver)
- Example from showed Topology
 - 3 VTEPs sharing same VNI and Multicast-Group mapping (single Multicast-Group)
 - 3x Source-Tree (1 per VTEP per Multicast-Group)

Multicast Enabled Underlay: PIM BiDir Underlay

- Bidirectional PIM (BiDir)
- Redundant Rendezvous-Point using Phantom-RP
- Building Bi-Directional Shared-Tree
 - Uses shortest path between Source and Receiver with RP as routing-vector
- 1 Shared-Tree per Multicast-Group
- Example from depicted topology
 - 3 VTEPs sharing same VNI and Multicast-Group mapping (single Multicast-Group)
 - 1x Shared-Tree (1 per Multicast-Group)

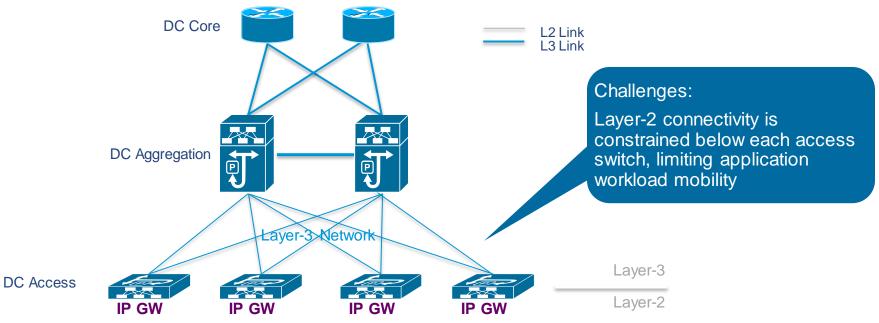
VXLAN Design Considerations to Remember Multicast Enabled Underlay


- Multi-Destination Traffic (Broadcast, Unknown Unicast, etc.) needs to be replicated to ALL VTEPs serving a given VNI
 - Each VTEP is Multicast Source & Receiver
- For a given VNI, all VTEPs act as a Sender and a Receiver
- Head-End Replication will depend on hardware scale/capability
- Resilient, efficient, and scalable Multicast Forwarding is highly desirable
 - Choose the right Multicast Routing Protocol for your need (type/mode)
 - Use redundant Multicast Rendezvous Points (Spine/Aggregation generally preferred)
 - 99% percent of Overlay problems are in the Underlay (OTV experience)

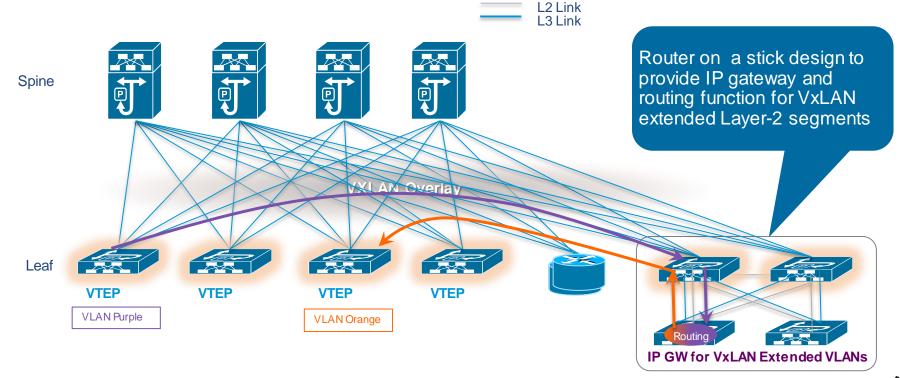
Keep in Mind

Overlay Convergence = Underlay Convergence!

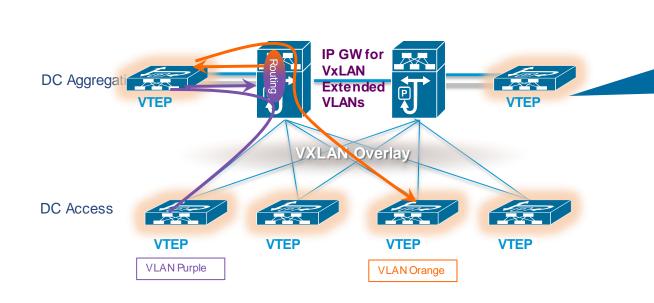
VXLAN Use Cases L2 STP/VPC Replacement – Routing Off-Box



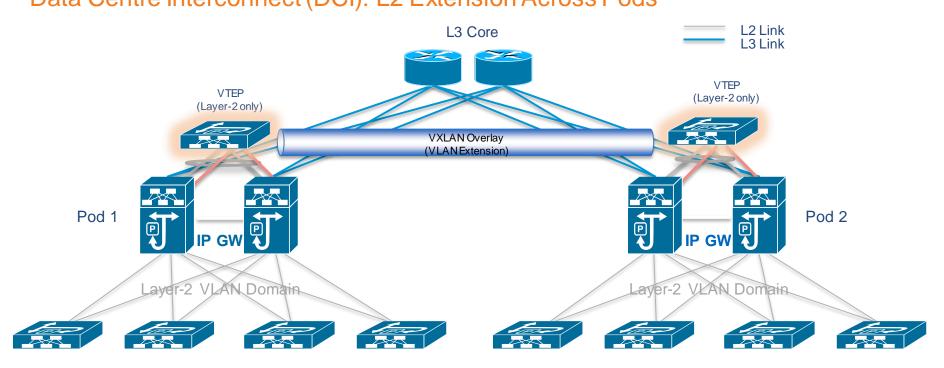
VXLAN Use Cases


L3 Routed Access Replacement – Routing Off-Box

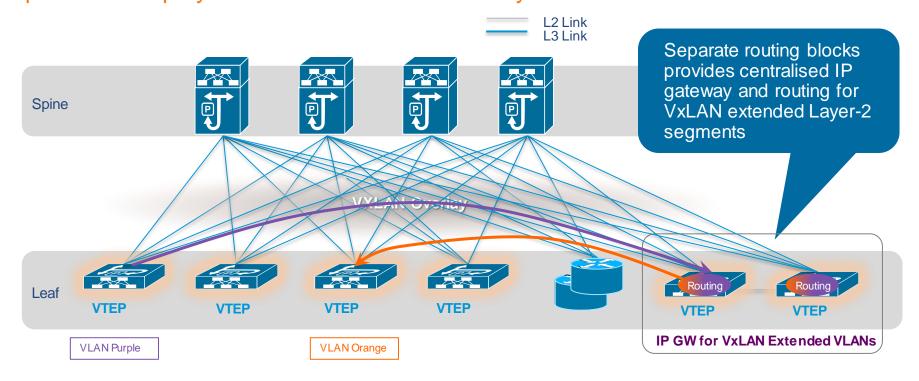
Traditional Layer-3 POD Design


VXLAN Design - VXLAN Bridging Spine-Leaf Deployment: Router on a Stick Design with Routing Block

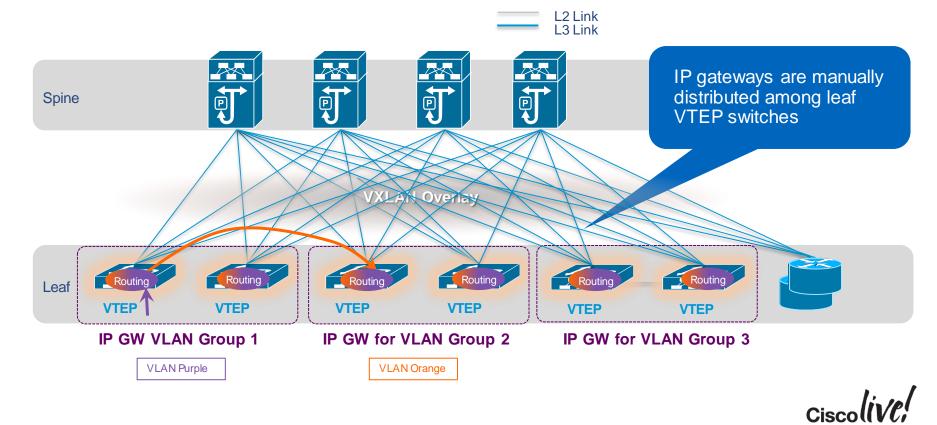
VXLAN Design - VXLAN Bridging Spine Leaf Deployment: VTEP on a Stick Design with IP GW on Aggregation


L2 Link L3 Link

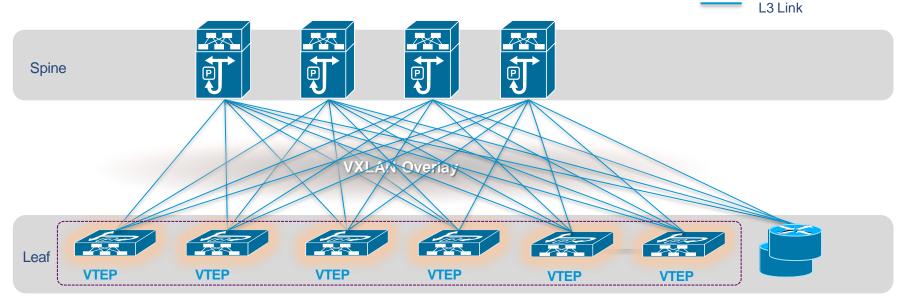
VTEP on a stick design Aggregation Switches are the centralised IP gateway.



VXLAN Design VXLAN Bridging Data Centre Interconnect (DCI): L2 Extension Across Pods


Ciscolin/P

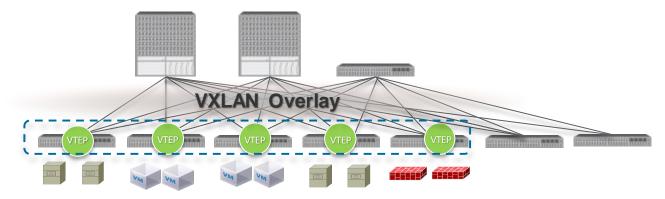
VXLAN Design - VXLAN Bridging+Routing Spine-Leaf Deployment: Centralised IP Gateway



Ciscolin/P

VXLAN Design - VXLAN Bridging+Routing Spine-Leaf Deployment: Distributed IP Gateway

VXLAN Design - VXLAN Bridging+Routing+Anycast GW Spine-Leaf Deployment: Distributed IP Gateway



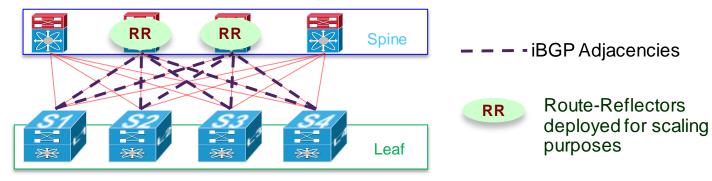
IP GW for ALL VxLAN Extended VLANs

L2 Link

Challenges with Traditional VXLAN Deployments Scale and Mobility Limitations

LIMITED SCALE

Flood and learn (BUM)- Inefficient Bandwidth Utilisation Resource Intensive – Large MAC Tables

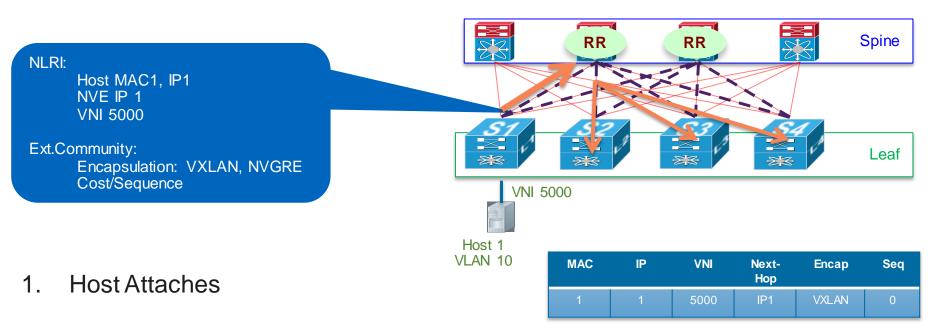

LIMITED WORKLOAD MOBILITY

Centralised Gateways – Traffic Hair-pining Sub-Optimal Traffic Flow

Barrier for Scaling out Large Data Centres and Cloud Deployments

VXLAN BGP Control Plane

Host and Subnet Route Distribution

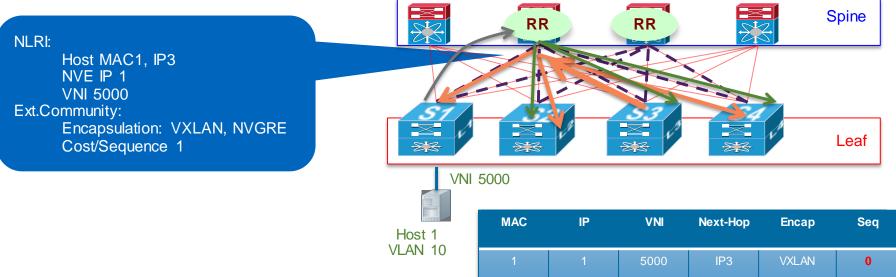


- Use MP-BGP with EVPN Address Family on the leaf nodes to distribute internal host/subnet routes and external reachability information
- MP-BGP also used to distribute IP multicast groups information
- MP-BGP enhancements to carry up to 100s of thousands of routes and reduce convergence time

<u>References</u>: A Network Virtualisation Overlay Solution using EVPN (draft-sajassi-nvo3-evpn-overlay-01)

VXLAN BGP Control Plane

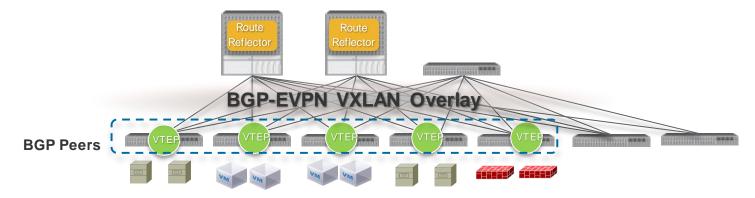
Host Advertisement



2. Attachment VTEP advertises host's MAC (+IP) through BGP RR

VXLAN BGP Control Plane

Host Moves



- 1. Host Moves behind switch S3
- 2. VTEP-3 (S3) detects Host1 and advertises H1 with seq #1

3. VTEP-1 (S1) sees more recent route and withdraws its advertisement

Next Gen VXLAN Fabric w/BGP E-VPN Control Plane

Delivering Multi-Tenancy and Seamless Host Mobility at Cloud Scale

INTEROPERABLE

Standards Based BGP-EVPN VXLAN INCREASED SCALE Eliminates Flooding

Conversational Learning Policy-Based Updates OPTIMISED MOBILITY Distributed Anycast Gwy Integrated Routing /Bridging vPC & ECMP

OPERATIONAL FLEXIBILITY

Layer 2 or Layer 3 Controller Choice

Breaking the Traditional VXLAN Scale Barriers

DevOps & Network Programmability

DON

53

Network Automation Today

In a majority of environments:

- Stage configuration in Notepad, copy/paste
- Automation according to definition of fixed third party tools
- Conversational configuration via expect scripts

Challenges:

- Manual, repetitive, error-prone tasks
- Waste time & talent
- Network lags behind industry automation capabilities

Pasting large configuration:

% Invalid command at '^' marker. RTPDC1N3K1(config-cmap-qos)# class copp-s-igmp RTPDC1N3K1(config-cmap-qos)# police pps 400 ^
% Invalid command at '^' marker. RTPDC1N3K1(config-cmap-qos)# class copp-s-routingProto2 RTPDC1N3K1(config-cmap-qos)# police pps 1300 ^
% Invalid command at '^' marker. RTPDC1N3K1(config-cmap-qos)# class copp-s-v6routingProto2 RTPDC1N3K1(config-cmap-qos)# police pps 1300 ^
% Invalid command at '^' marker. RTPDC1N3K1(config-cmap-qos)#

Typo? Start from scratch

The Business Need for Network Programmability

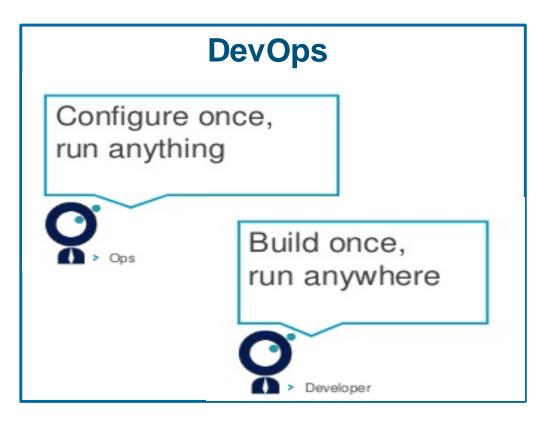
- Networks grow to accommodate Apps
- More devices to manage
- Save time with repetitive tasks

- Business relies on infrastructure
- Lost uptime is lost revenue
- Minimise human error

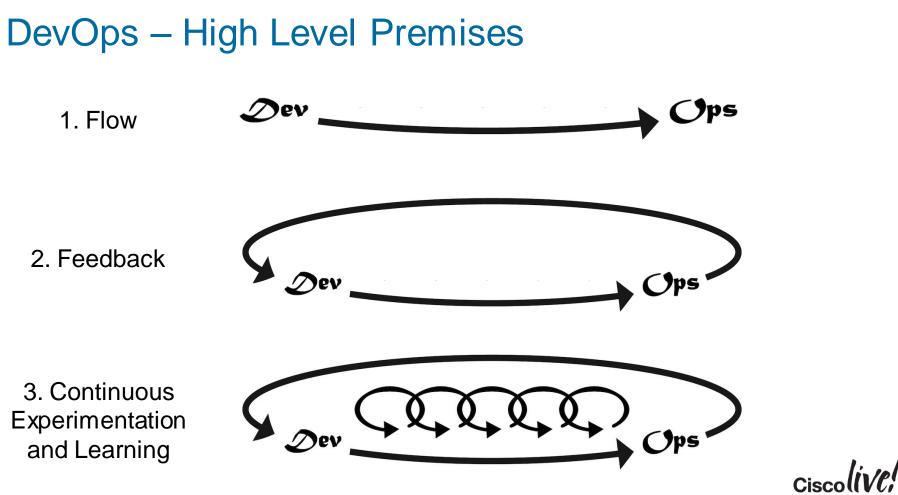
 High value engineers being asked to focus on strategic tasks and shift away from maintenance

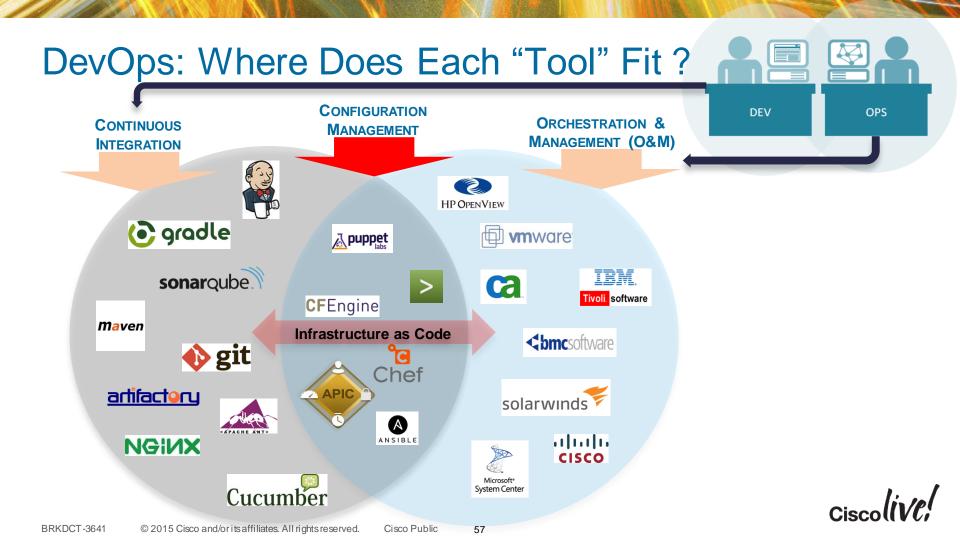
What's Driving DevOps Adoption?

"Organisations with High Performing DevOps organisations were 2.5x more likely to exceed profitability, market share and productivity goals...


...and had 50% higher market capitalisation growth over 3 years..."

- They're more agile
 - 30x more frequent deployments
 - 8,000x faster lead time than their peers


- They're more reliable
 - 2x the change success rate
 - 12x faster MTTR


Source: Puppet Labs 2014 State Of DevOps - <u>http://puppetlabs.com/2013-state-of-devops-infographic</u>

App Development via DevOps is Changing Behaviour

Ciscolive!

What About the "Loss in Translation"?

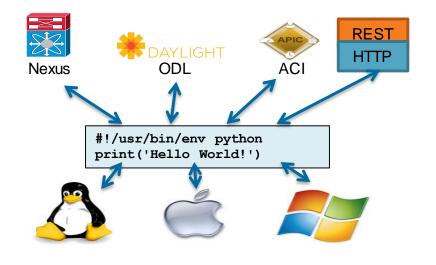
APPLICATION LANGUAGE

Eschange 🕼 🖅

SAP SharePoint

- Application Tier Policy and Dependencies
- Security Requirements
- Service Level Agreement
- Application Performance
- Compliance
- Geo Dependencies
- Etc.

NETWORK LANGUAGE

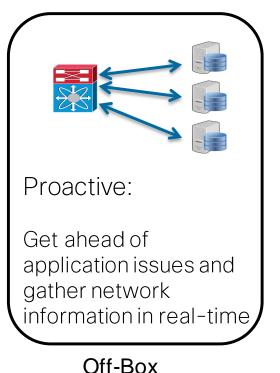


- VLAN
- IP Address
- Subnets
- Firewalls
- Quality of Service
- Load Balancer
- Access Lists

Programming: One Skill Applies to Many Tasks

- Nexus Portfolio
 - Python, Bash, NX-API
- ACI / APIC
 REST, Python, etc.
- And outside...
 - All major OS'

Programming Classifications

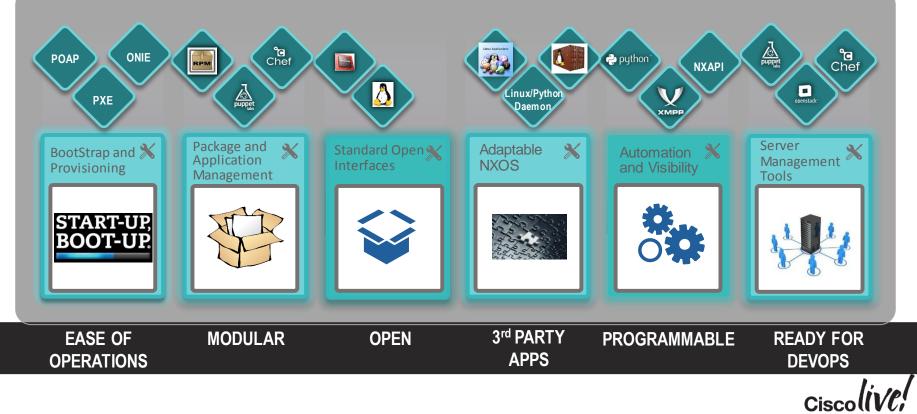

On Box Ex: Bash, Python

Programmability Sample Use Cases

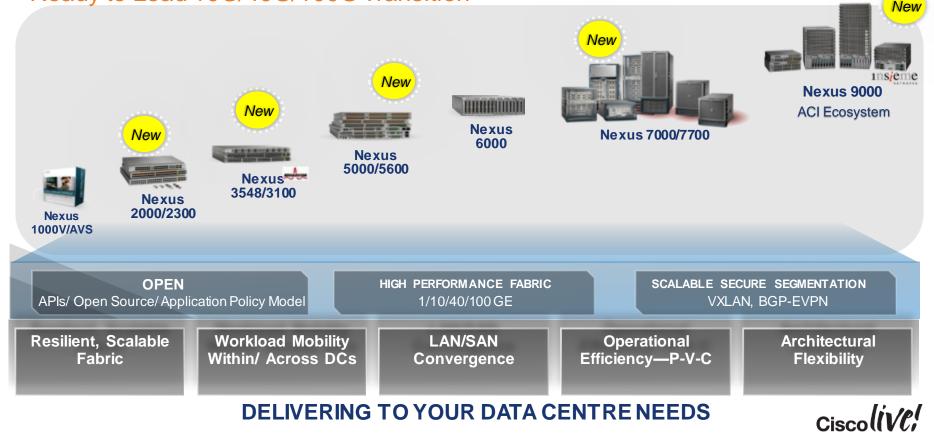
Application Monitoring

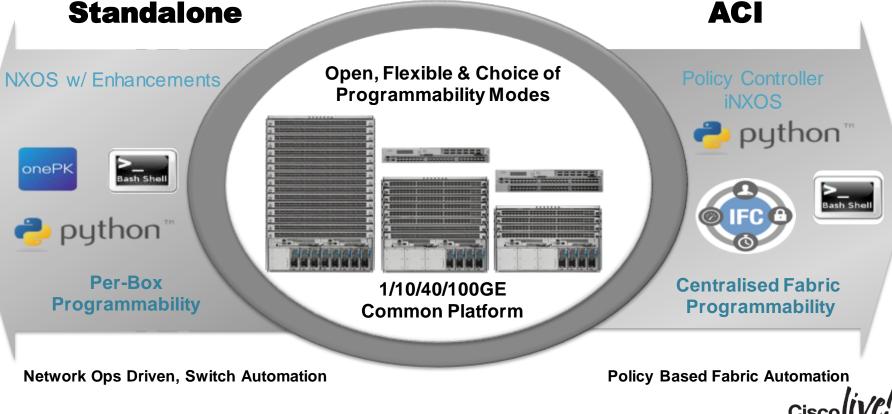
Super Commands

Topology Mapper



Scale:


Execute a push model for commands in multiple places


NX-OS Evolution Enabling DevOps

DC and Cloud Networking Portfolio – Nexus Family Ready to Lead 10G/40G/100G Transition

Nexus 9000 – Two Modes of Operation

Cisco NX-OS

Programmability, Visibility, and Automation Suite

Open Access & Programmable

- BASH access
- Broadcom shell access
- Linux containers/Guest
 Shell
- NX-API
- XML/JSON RPC, NetConf
- Python scripting/Python
 Daemon
- OpenFlow support
- Cisco onePK[™]
- Customisable CLIs

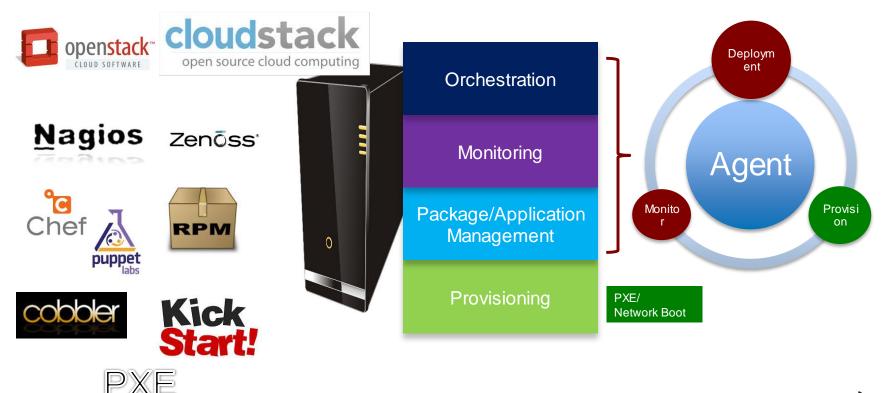
Automation and Orchestration

- Puppet/Chef integration
- OpenStack network plugin
- OpenDaylight integration
- XMPP support
- Email support

Visibility

vTracker

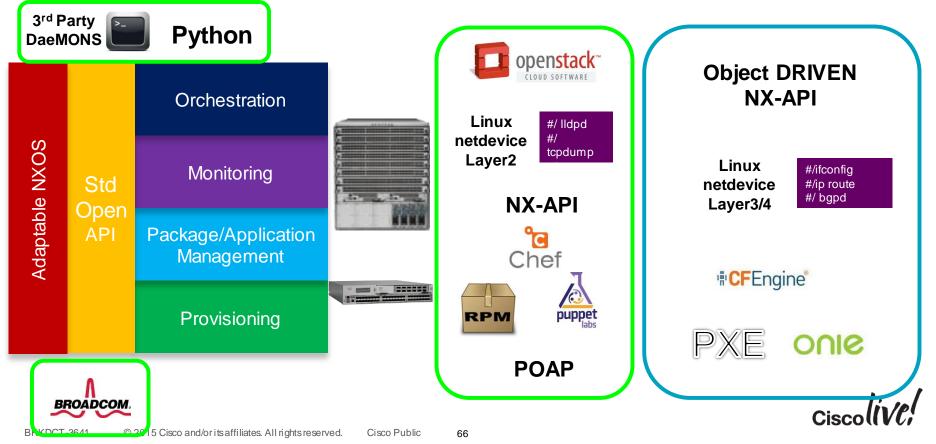
- Dynamic buffer monitoring
- Flow monitoring
- Enhanced Wireshark
- SMTP email "pipe" output

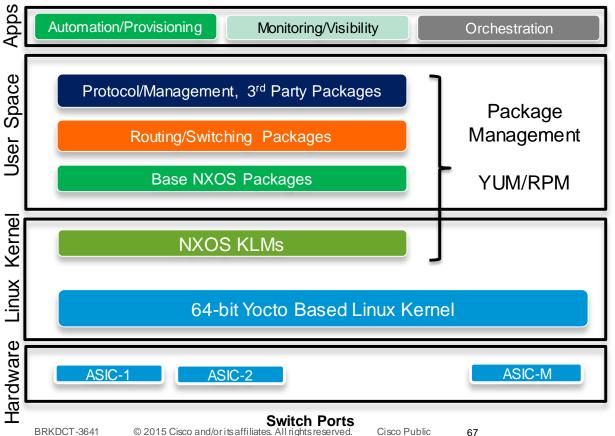

the With

 Embedded Event Manager (EEM)

SNMP (v1, v2, v3), Syslog, NETCONF, RMON, CLI

fin. Min.


LINUX Server Management Dev-Ops

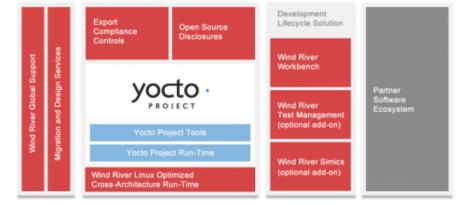

Consistent Dev-Ops Toolset and Operational Model

Extended to the Network Devices

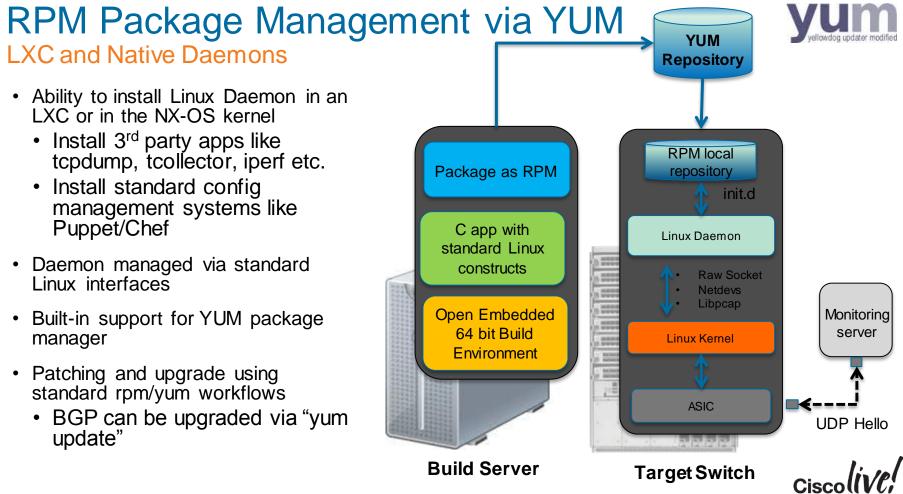
Open NX-OS Package Management

Target Architecture

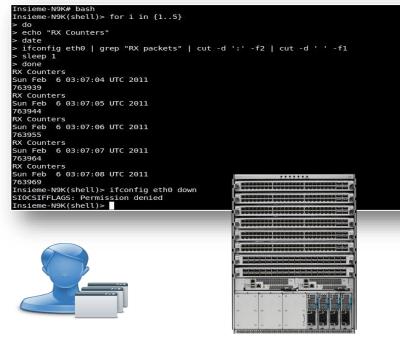
- Linux Kernel
- Yocto Toolchain
- RPM based packages for infrastructure services
- 3rd party daemon and packages (e.g. 3rd party routing


Yocto Kernel Open Embedded Tool Chain

- Open NX-OS leverages a 64bit Wind River Linux Kernel with Yocto 1.2
- Provides open systems
 development environment
- Yocto Project uses a build system based on the OpenEmbedded (OE) project
- https://www.yoctoproject.org/do wnloads/core/denzil121

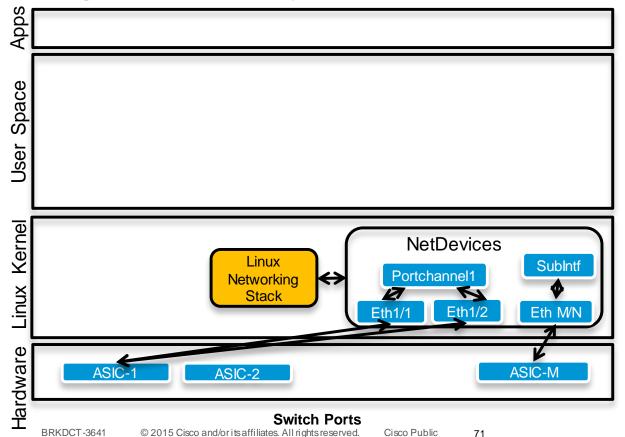


Wind River Linux 5 Architecture


http://www.windriver.com/announces/y octo-project/

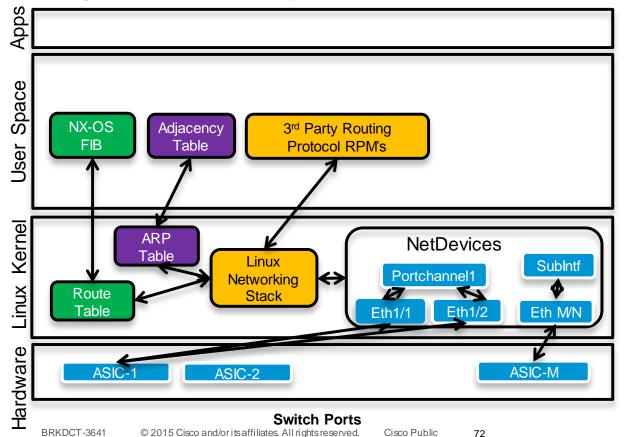
NX-OS Linux Interfaces Bash Access

- Issue a CLI to gain access to Linux Bash Shell
- Leverage favorite Linux commands like ps, grep etc. available and could be used for further monitoring and scripting
- Bash shell has non-root privileges to protect against unintended operator errors
- Role-based access to Bash



NX-OS Interfaces as Linux Netdevs

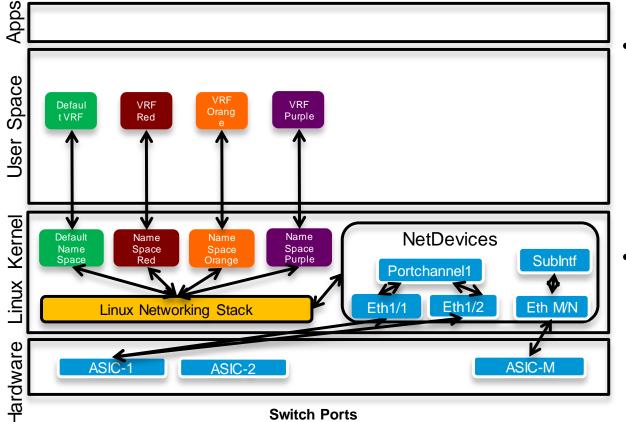
Stage 1 – Access to Layer 1 and 2 NX-OS Constructs



- Access to switch infrastructure via Linux Network Stack
- Ifconfig, tcpdump, openLLDP etc.
- socket/libcap applications to send/snoop pkts to/from ASIC to CPU

NX-OS Kernel Stack Interfaces

Stage 2 – Access to Layer 3 NX-OS Constructs



- Allows 3rd party apps to inject routes to hardware using Linux interfaces
- Install 3rd party routing protocols built on Linux interfaces
- Access to ioctl kernel infrastructure

NX-OS Kernel Stack Interfaces

Stage 3 – Representing VRF Context via Linux Name

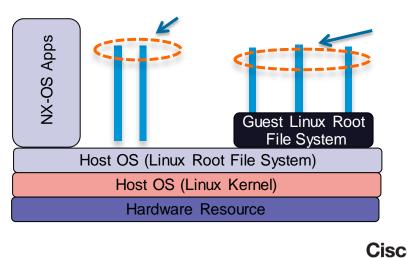
Cisco Public

73

© 2015 Cisco and/or its affiliates. All rights reserved.

BRKDCT-3641

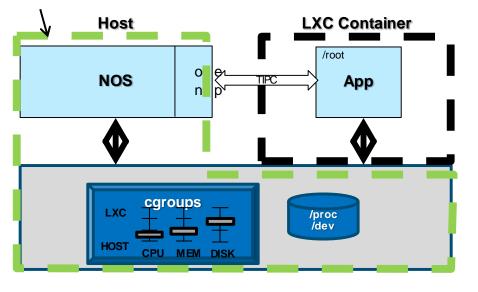
- Forwarding information within the 'VRF' context can be accessed via a corresponding Linux Name Space
- setns, ip-netns to change VRFs



Linux Containers (LXC)

- Provides a secure and segregated operating environment for applications
- Can run either Cisco or Open Source applications
- Can use standard Linux distros
- OS Level Virtualisation
- Shared Kernel
- Shared physical resources
- Isolation through name spaces

LXC is an operating system virtualisation technology that shares the host kernel with the guest but provides isolation through namespace extensions to the Linux kernel. http://linuxcontainers.org/



74

Secure LXC Containers

- Enable Nexus 9000 switches to host customer applications using LXC virtualisation technologies
- Customers can compile & package their applications into OVAs for deployment on Nexus 9K

Trust Boundary for Secure LXC Containers

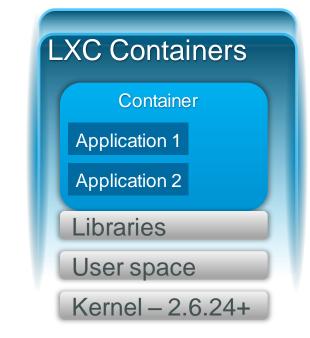
Base LXC to host trusted Cisco applications

- Namespace separation with LXC
- Cgroups to limit resource usage

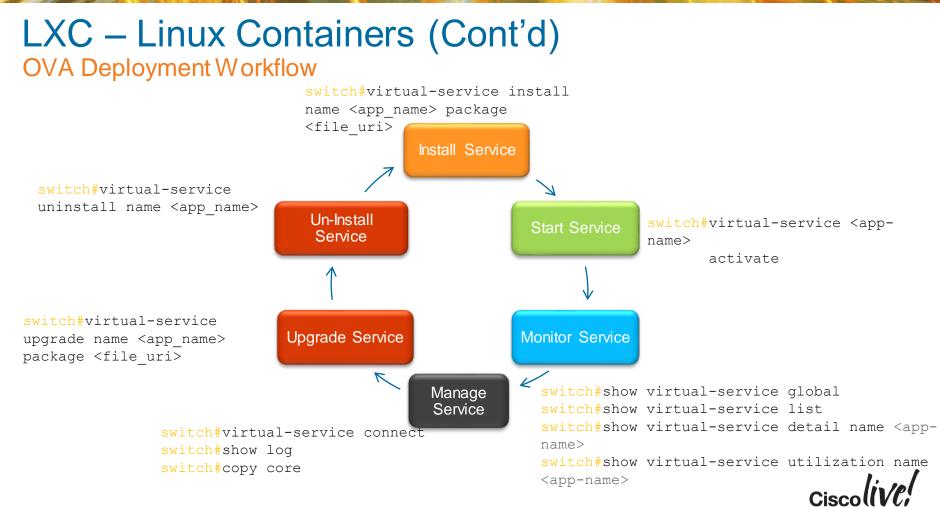
Secure LXC to host customer applications and protect the integrity of the host system

- Drop capabilities to limit a privileged user
- Use of Secure Linux technology, like SMACK, to address risks to host 3rd party applications running at root privilege
- Restrict TIPC

Support for both 32-bit and 64-bit containers


LXC – Linux Containers (Cont'd)

LXC Benefits


- Isolates Applications and Operating Systems
- Provides nearly native performance as LXC manages resource allocation in real-time
- More elastic than a full hypervisor
 - Less time to start
 - No need for a separate kernel boot
- Lightweight

LXC Limitations

- Shares kernel with underlying OS
- Only allows for Linux guests
- Not a full virtualisation stack
- Security depends on the host system

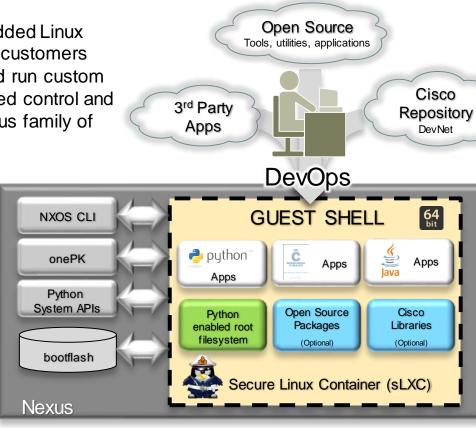
Guest Shell

Guest Shell is an embedded Linux environment that allows customers (DevOps) to develop and run custom applications for automated control and management of the Nexus family of data centre switches.

NXOS CLI interface

- Access the Guest Shell from NXOS CLI
- Access NXOS CLI from within the Guest Shell

onePKAPIs


• Access to a rich set of NXOS APIs for interface to management and datapath functions.

Python System APIs

- BCM shell ?
- What else?

bootflash

• Read/w rite access to the NXOS bootf lash.

78

Guest Shell is automatically enabled. *Zero-touch.*

64bitapplication environment

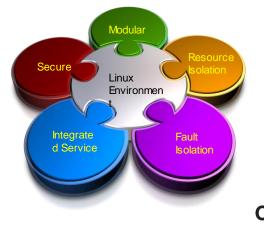
Guest Shell ships with python support enabled.

C and Java support can be added through *YUM installs*.

Upgradeable rootfscisco packages

Built on Secure LXC.

Guest Shell (Cont'd)


Guest Shell "What"

✓ Linux Container Environment

- ✓ Symbiotic relationship with Network OS.
- ✓ Activated at boot time.
- ✓ Application and programmatic interface habitat.
- \checkmark Can be resized as needed by user (via CLI).

Guest Shell Innards

- RPM package manager (yum)
- Python interpreter (pip support)
- onePK libraries
- ✓ bootflash: access

Allows users access to embedded Linux system

Guest Shell (Cont'd)

Guest Shell – LXC container installed and activated by default

Virtual Service List:

Name	Status	Package Name
guestshell+	Activated	guestshell.ova

Access Guest Shell n9396-1# guestshell

guestshell:~\$ _

Run Host Commands from Guest Shell:

```
guestshell:~$ dohost "sh ver | in 'System version' "
{0}{System version: 6.1(2)I2(3)}
guestshell:~$
```

Run Guest Shell Commands from Host

```
n9396-1# guestshell run pwd
/home/guestshell
n9396-1#
```

Change vrf for Guest Shell (by default it's in the default vrf) guestshell: \$ chvrf management ping 171.70.42.150 PING 171.70.42.150 (171.70.42.150): 56 data bytes 64 bytes from 171.70.42.150: icmp_seq=0 ttl=54 time=1.589 ms 64 bytes from 171.70.42.150: icmp_seq=1 ttl=54 time=2.614 ms RPM Yum Install in Guest Shell

guestshell:~\$ sudo chvrf management yum install bison		
poky_1_5_1_x86_64	I 951 B	00:00
poky_1_5_1_x86_64/primary	1.4 MB	00:00
poky_1_5_1_x86_64		6582/6582
repository1	I 951 B	00:00
repository1/primary	1.3 MB	00:00
repository1		6368/63680
Setting up Install Process		
Resolving Dependencies		
> Running transaction check		
> Package bison.i586 0:2.7.1-r0 set to be updated		-
> Processing Dependency: libc.so.6 for package: bisor	n-2.7.1-r0.i58	6

Running Python in Guest Shell

guestshell:~\$ which python /usr/bin/python guestshell:~\$ python -V Python 2.7.3

- Python PIP Install in Guest Shell
- (PIP is pre-installed in Guest Shell)

guestshell:~\$ pip

Usage:

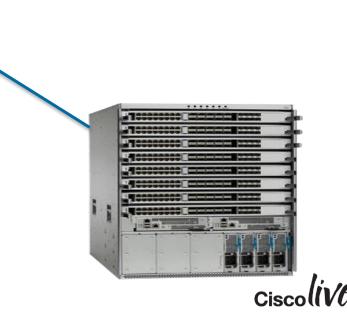
pip <command> [options]

Commands: Install uninstall freeze list show search zip unzip bundle help

Install packages. Uninstall packages. Output installed packages in requirements format. List installed packages. Show information about installed packages. Search PyPI for packages. Zip individual packages. Unzip individual packages. Create pybundles. Show help for commands.

TME-1-9508-1# run bash bash-4.2\$ bash-4.2\$ ifconfig -a dummvØ Link encap:Ethernet HWaddr a6:9f:04:2b:d3:ef BROADCAST NOARP MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) ethØ Link encap:Ethernet HWaddr 00:00:00:00:1b:01 inet6 addr: fe80::200:ff:fe00:1b01/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:477374330 errors:0 dropped:0 overruns:0 frame:0 TX packets:272305025 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:79582379696 (74.1 GiB) TX bytes:58519512337 (54.5 GiB)

- eth1 Link encap:Ethernet HWaddr c0:67:af:a0:de:2e inet6 addr: fe80::c267:afff:fea0:de2e/64 Scope:Link UP BROADCAST RUNNIG MULTICAST MTU:1500 Metric:1 RX packets:4813640 errors:0 dropped:0 overruns:0 frame:0 TX packets:182072 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:706614536 (673.8 MiB) TX bytes:91737078 (87.4 MiB)
- eth2 Link encap:Ethernet HWaddr 00:00:00:01:1b:01 inet6 addr: fe80::200:ff:fe01:1b01/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:9400 Metric:1


- Issue a CLI to gain access to Linux Bash Shell
- Leverage favorite Linux commands like ps, grep etc. available and could be used for further monitoring and scripting
- Role-based access to Bash

Bash Shell Access

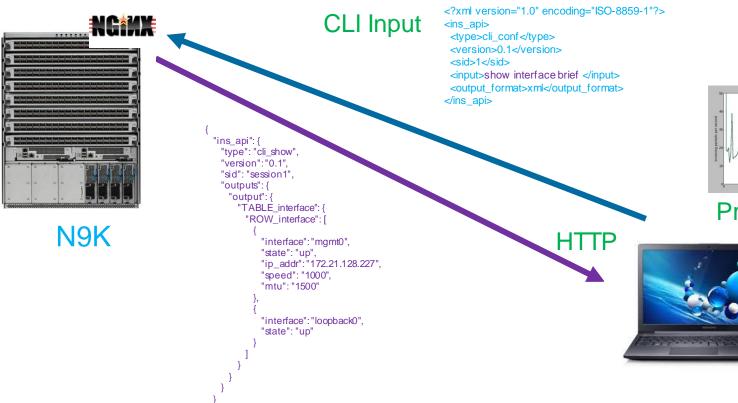
- Monitor Memory Utilisation and Processes through Bash:
- Leverage the standard Linux command to monitor network processes

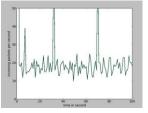
bash-4.2\$ top Shift + F Select "N" for Memory										
top - 15:00:48 up 1 day, 12:41, 4 users, load average: 0.22, 0.28, 0.33 Tasks: 219 total, 2 running, 215 sleeping, 0 stopped, 2 zombie Cpu(s): 9.7%us, 3.3%sy, 0.0%ni, 86.4%id, 0.1%wa, 0.2%hi, 0.3%si, 0.0%st Mem: 16402508k total, 3452904k used, 12949604k free, 258260k buffers Swap: 0k total, 0k used, 0k free, 1477268k cached										
PID USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
5343 svc-isan		0							0:01.13	
5361 root	20	0	371m						3:10.56	-
5470 root		0	770m						10:12.65	
5468 root		0	605m						0:11.99	
5344 svc-isan		0	335m	43m	7768	S	0	0.3	0:01.06	pixm
5683 root	20	0	324m	32m	8612	s	0	0.2	0:00.72	12fm
5675 root	20	0	320m	31m	14m	s	2	0.2	9:29.22	ipgosmgr
5508 root	20	0	597m	31m	1 Om	S	0	0.2	0:41.30	snmpd
5682 root	20	0	334m	30m	1 Om	S	0	0.2	0:01.94	ethpm
5681 root	20	0	321m	30m	7636	S	0	0.2	4:51.05	diag port lb
5706 root	20	0	936m	26m	1 1m	S	0	0.2	0:14.00	pim – –
5664 root	20	0	314m	25m	8248	S	0	0.2	0:00.78	eltm
5703 root	20	0	604m	23m	8676	S	0	0.1	4:03.24	ospf

BCM Shell Access

- Issue a CLI to get shell access to underlying BCM chips
- Direct read/write access to hardware tables
- Can Peek/Poke underlying registers
- Python wrapper to get BCM Shell output

TME-1-9508-1# bcm-shell module 1 Warning: BCM shell access should be used with caution Entering bcm shell on module 1 Available Unit Numbers: 0 1 2 brocket 0 2 (Mol/LP										
	<pre>bcm-shell.0> ^[[A^[[A^[[B bcm-shell.0> 13 l3table show 13 l3table show Unit 0. free L3 table entries: 212960</pre>									
	Entry VRF I	P address	Mac Address	INTE MOD	PORT	CLASS HI	т			
	147488 1	192.168.1.2	00:00:00:00:00:00	100006			y			
	149300 1	30.1.1.255	00:00:00:00:00:00	149150	ø		'n			
	150696 1	30.1.1.1	00:00:00:00:00:00	100012	0		n			
	152696 1 10.1.1.3 00:00:00:00 100007 0 0 0 y									
	154860 1	192,168,1,15	00:00:00:00:00:00	149150	ø		'n			
	156336 1	192.168.1.0	00:00:00:00:00:00	100000	õ			ROUTE)		
	163452 1	192.168.1.13	00:00:00:00:00:00	149151	0			ROUTE)		
	165120 1	192.168.1.3	00:00:00:00:00:00	149150	0		n (2001)			
	166280 1	30.1.1.0	00:00:00:00:00:00	100000	õ			ROUTE)		
	168280 1	10.1.1.2	00:00:00:00:00:00	100006	ñ		y (2007			
	170444 1	192.168.1.14	00:00:00:00:00:00	100010	õ		y			
	173968 1	192.168.1.1	00:00:00:00:00:00	149151	õ			ROUTE)		
	174872 1	30.1.1.2	00:00:00:00:00:00	149151	ă			ROUTE)		
	179036 1	192.168.1.12	00:00:00:00:00:00	100000	õ			ROUTE)		
	183716 1	192.168.1.11	00:00:00:00:00:00	149150	õ		n (2007)			
	184680 1	192.168.1.6	00:00:00:00:00:00	100007	õ		Y .			
	186876 1	10.1.1.10	00:00:00:00:00:00	149151	õ			ROUTE)		
	192308 1	192.168.1.9	00:00:00:00:00:00	149151	õ			ROUTE)		
	193012 1	10.10.10.10	00:00:00:00:00:00	149151	ă			ROUTE)		
	193528 1	192.168.1.4	00:00:00:00:00:00	100000	ă			ROUTE)		
	201800 1	192.168.1.7	00:00:00:00:00:00	149150	õ		n (2004			
					-					

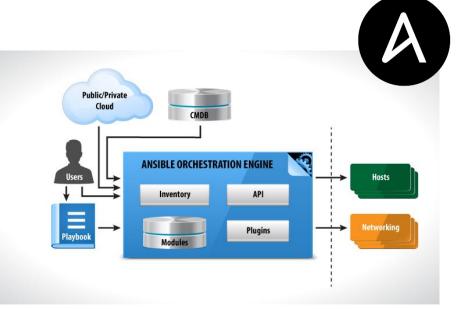

Nexus 9000 - NX-API

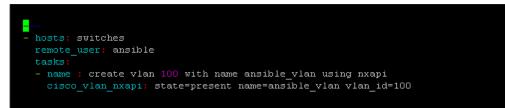

- Open RPC API Extensible to support REST
- Universal Access: http or https based
- Programmability Oriented
- Ready for Integration: CLI based input and structured output (JSON/XML)

NSIEME N9K Sandbox Documentation		1nsieme
Request	Response	
<pre><?xml version="1.0" encoding="ISO-8859-1"?> <ins_api></ins_api></pre>	<pre>{ "ins_spl": { "type": "cl1_show", "version": "0.1", "outputs": { "outputs": { "output": { "Interface": [</pre>	
POST request » Helper type cli show <i>OR</i> bash <i>OR</i> cli conf	<pre>"portmode": "routed", "state": "up", "state_rsn_desc": "none", "speed": "106", "ratemode": "D"),</pre>	
cll_snow UK bash UK Cll_cont input show version;show vlan;show interface brief OR	<pre>{ "interface": "Ethernet2/2", "vlan": "", "type": "eth", "portmode": "routed",</pre>	

Nexus 9000 NX-API

Open RPC API - Extensible to support REST




Programmability

Ansible and NX-API

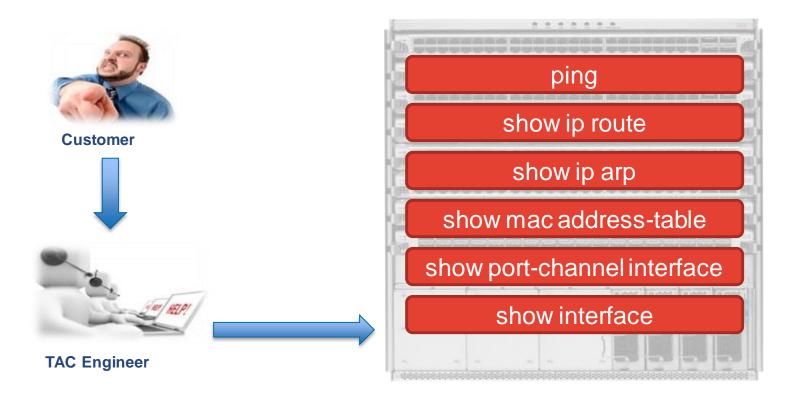
- Ansible
 - Agentless
 - SSH transport
 - Push Model
 - · Python based
- Leverages NX-API

https://github.com/Mierdin/ansible-nxapi/tree/master

/www.jedelman.com/home/leveraging-cisco-nx-api-with-ansible-to-make-your-life-easier

Python Scripting

- Built in Python Shell
- Can be used to execute CLI commands and reference Objects through Python interpreter
- Most commands can be executed to return the command output as a Python Dictionary
- Pass arguments to python scripts from CLI
- Integration with Embedded Event Manager (EEM)

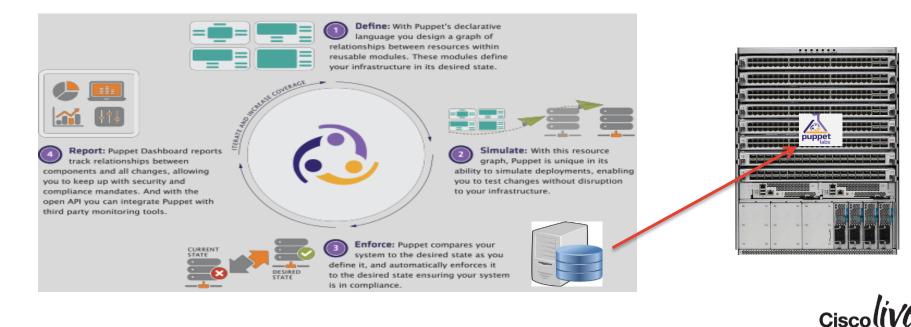

Community Code Development

- Visit us on GitHub: <u>https://github.com/datacenter/</u> <u>nexus9000</u>
- ACI and NX-OS code examples and libraries
- Open source and community developed tools by partners and 3rd party developers

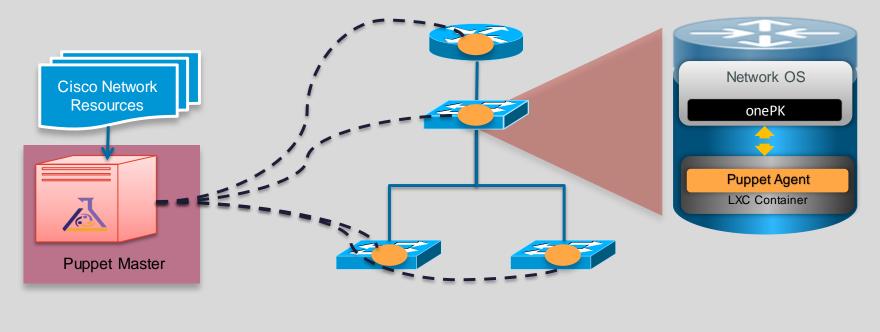
Python Scripting Example Serviceability – Reduce Time-to-Resolution

BRKDCT-3641 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 89

Python Scripting Example Serviceability – Reduce Time-to-Resolution


INSIEME# detailson 192.168.208.2										-					
Details for IP Address: 192.168.208.2											al dai yan Pitan				
+	Ping Result	+ N	lext Hop	+ MAC +		+ L3 In	+ nt L2	Int	+	Errors		+ Po Me:	+ nbers		
192.168.208 	.2 0.00% packet los 0.494/3.455/15.219		.1.1, ospf-1 30f7.0d9		30f7.0d9f.8801 		P 		0 input error 0 output errors					AND A DECK OF THE OWNER	
Enter Next IP to get details on (Press 0 to exit): 10.1.1.1 Details for IP Address: 10.1.1.1															
IP Address	Ping Result	Next Hop	+ MAC	L3 In	t L2	Int	E	rrors	+ 	Po Mem	bers	·+ -+			
	0.00% packet loss 0.578/0.67/0.945 ms		30f7.0d9f.88	Í.	i	i	0 outp	ut err	ors	Eth1/2				ines have	
+++++++									Ta state 1						
					\rightarrow	~	2	~				-			
	TAC Engineer					-						4-		E	
						1.1404040404	0.040404040	101010-0101	0121212121	10101010101010		1.1.1.1.1.1.1.1.1	979797979797979	*********	and a second second second

Puppet/Chef Agents



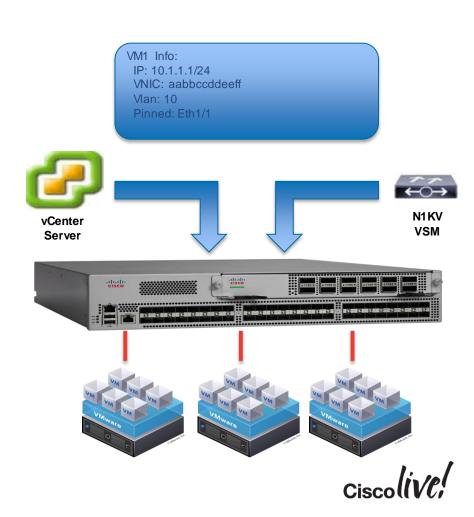
- Initially will run in an LXC
- Will run as native daemons and installed via RPM Q1CY15

Cisco Puppet Plug-In: Architecture

Data Centre Network

Cisco Puppet Resource Type Coverage: 1

Feature	Resource Name	Description			
Cisco Device Access	cisco_device	Allows credentials for user access control & accounting			
Base L2/L3 interface	cisco_interface	General interface & L2/L3 base settings			
VLAN	cisco_vlan	Create/destroy of VLANs and general settings			
Interface-vlan (SVI)	cisco_interface_vlan	Create/destroy of SVIs and SVI specific interface settings			
VLAN Trunking Proto (VTP)	cisco_vtp	VTP global settings			
SNMP	cisco_snmp_server cisco_snmp_community cisco_snmp_group cisco_snmp_user	SNMP monitoring settings. Notification receiver settings not covered as of now.			
OSPF	cisco_ospf cisco_ospf_vrf cisco_interface_ospf	OSPF instance create/destroy, per-VRF settings, and interface settings (area, cost, msg digest, etc)			



Cisco Puppet Resource Type Coverage: 2

Feature	Resource	Description
TACACS/AAA*** ***full set not available at EFT target date	cisco_tacacs_server cisco_tacacs_server_host cisco_aaa_tacacs_group cisco_aaa_authentication cisco_aaa_authorization cisco_aaa_accounting	 TACACS global settings TACACS per-host settings group association and settings mapping of groups to AAA features (authentication, authorization, accounting).
Raw Config CLI commands	cisco_command_config	Resource to directly apply blocks of configuration CLI commands.

vTracker - VM Visibility

- Ability to track VM information per port
 - List of VMs attached
 - VM's IP Addresses, VLAN, Port Group, vNIC, MAC address
- Integration with N1KV to
 - Provide Upstream/Downstream Views
 - Provision VLANs on trunks to ESX Hosts
- Trace VM Movement history in network (SPLUNK integration)
- Dynamic network policies

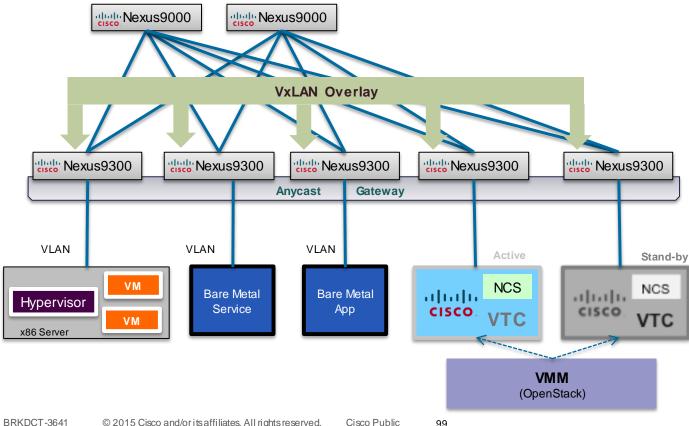
VM Tracker Functionality

- Add/remove vlans on interface based on VLAN requirements of VMs in the host connected to that interface.
- Automatic creation and deletion of VLANs globally. This functionality can be enabled/disabled per connection.
- Instantaneously update VLAN configuration based on changes in vCenter.
- Support for Port-channel towards the host.
- Ability to configure VLAN range per connection to limit the scope of dynamic VLAN configuration.
- Ability to enable stickiness of user configured native vlan.
- Ability to enable/disable VM Tracker per interface.
- Connection to vCenter based on username/password or extension-key based certificate.
- Supports HA and Fault Tolerance features of vCenter.

Controllers and Orchestration Tools

53

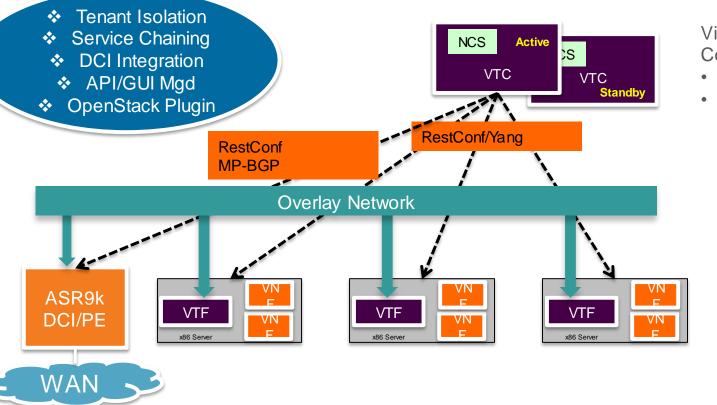
Different Operations Modes with Nexus 9000


Nexus 9000 Standalone (with VTS)

PPEN AYLIGHT Image: state of the s	
NX-OS Working w/ multiple SDN controllers (inclusive for NfV)	APIC data object / policy model integrated natively with NX-OS running on Nexus 9000 switches (spines and leaves)
Loosely coupled integration (custom integration and open programmability)	Tightly coupled integration – Out of the box ready system
Deploy for multiple topologies Leaf/Spine, 2-Tier Aggregation, Full Mesh	Deployed as a well-known CLOS topology. It's a system approach.
Interoperable w/ 3 rd Party ToR Switches and WAN gear	Must be Nexus 9000 hardware for leaves and spines as well as ACI Software (switch code and APIC controller)

Application Centric Infrastructure (with APIC)

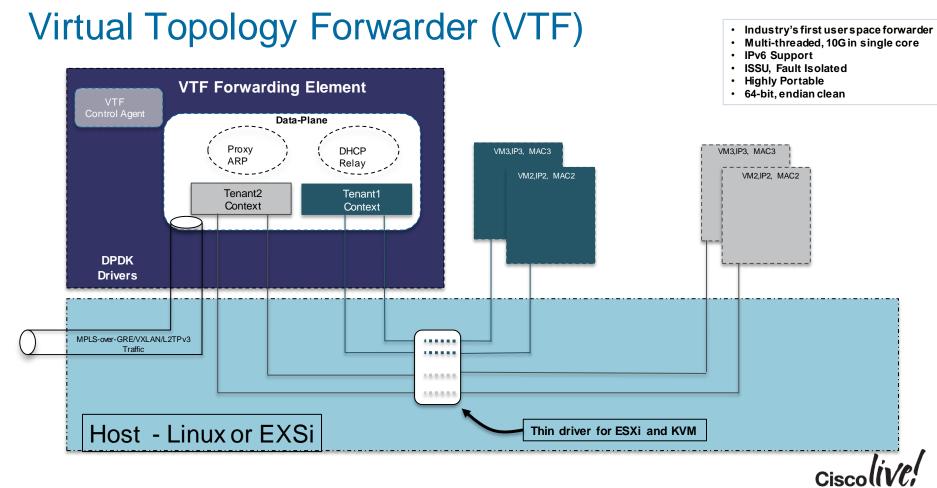
Cisco


Virtual Topology System (VTS) Phase 1.5

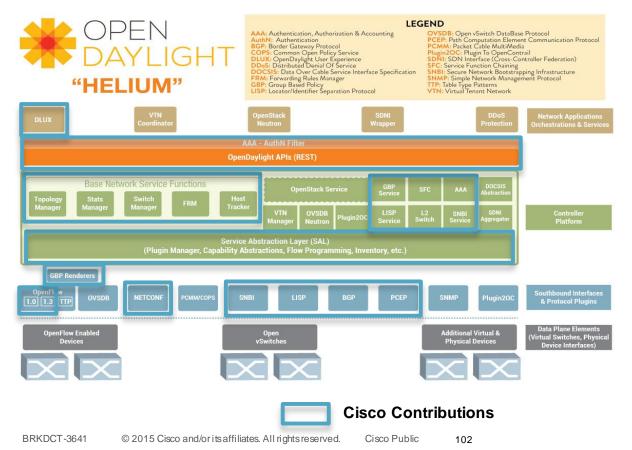
- 1 Network based L2 and L3 VxLAN for non-EVPN (multicast-based) and MP-BGP EVPN control plane
- 2. VTC provides orchestration/provisionin g of Nexus 9300 VTEP services
- 3. OpenStack integration

Ciscolin/P

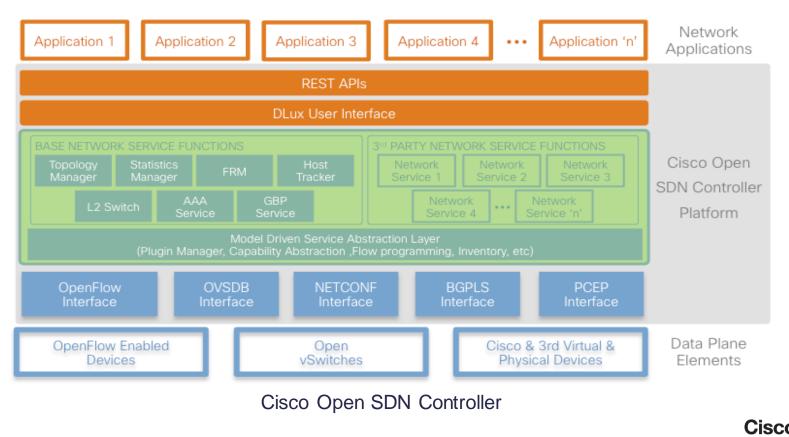
Virtual Topology System (VTS)


Virtual Topology Controller

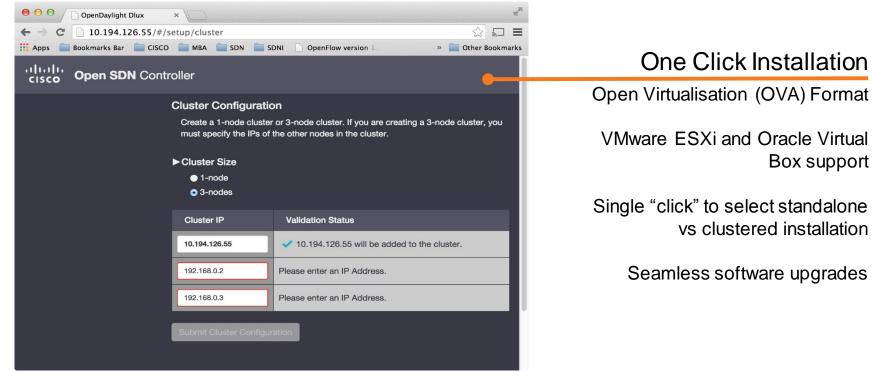
- Provisioning
- Overlay Control Plane


Virtual Topology Forwarder

- Packet Processing
 Agent
- Operates in userspace



OpenDaylight Controller



- Open platform for network programmability
- Enables SDN for networks at any size and scale
 - New "Helium" release delivers new user interface and a much simpler and customisable installation process
- Customer can add value at any layer (Apps, Network Services, SB Plugins) Ciscolive;

Cisco Commercial Distribution of OpenDaylight

Cisco Open Controller Deployment Experience

Application Centric Infrastructure (ACI)

Apps + Infrastructure

Application Oriented Policy = Operational Simplicity

Application Centric Infrastructure (ACI)

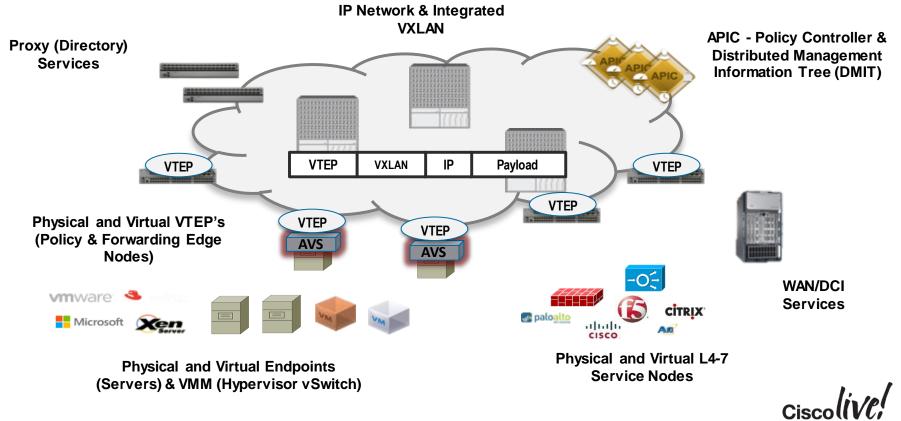
Rapid Deployment of Applications onto Networks with Scale, Security, Full Visibility

NEXUS 9500, 9300 and AVS

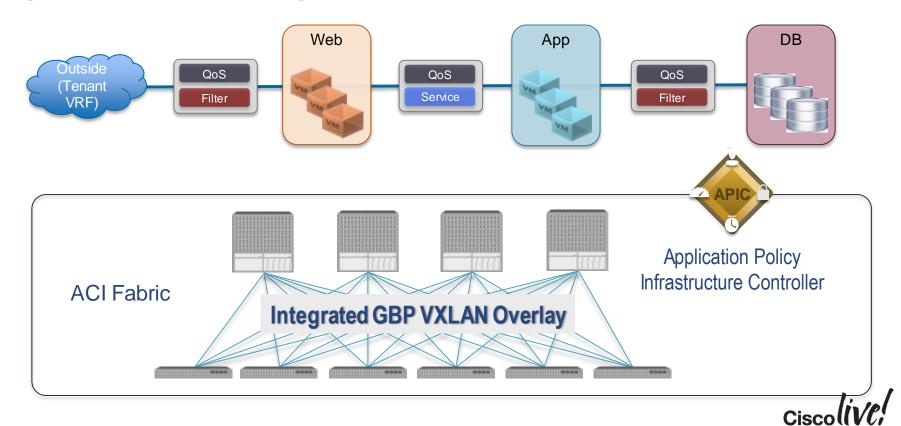
Declarative Policy Model Fully Object-oriented and Open Application Centric Desired State Packaged deployment Use, re-use and decommission with audit trails

APPLICATION CENTRIC POLICY

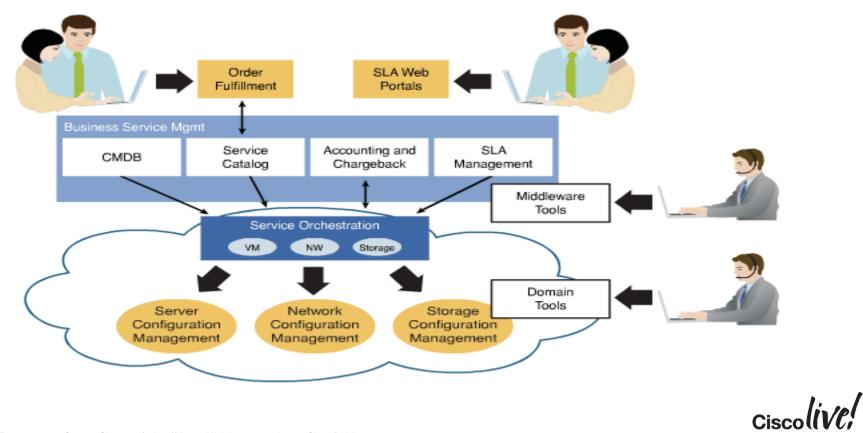
ACI


Centralised Management Role-Based Access Audit Logs Health Monitoring Open REST APIs

CONTROLLER

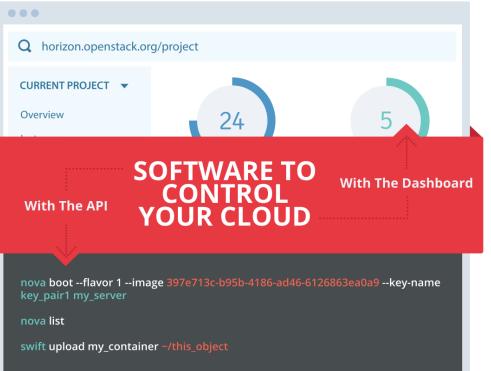

BRKDCT-3641 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 106

ACI – Network Components A Policy Based IP Network



ACI – Policy Components

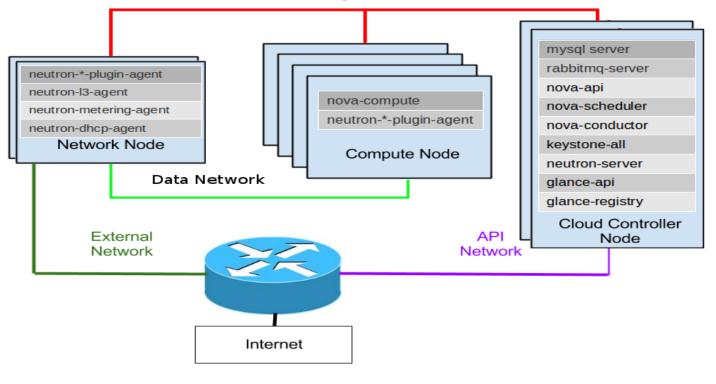
Logical Network Provisioning of Stateless Hardware



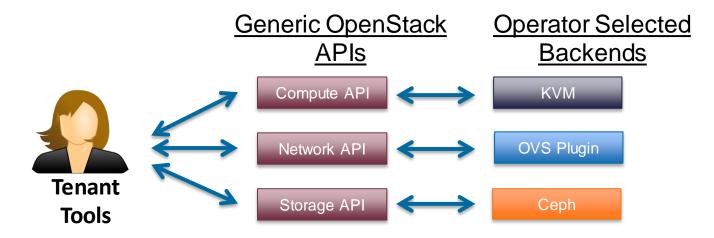
Orchestration in the IT World

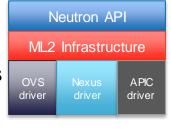
OpenStack Cloud Computing Software

- Freely available, open source software allowing anyone to build their own private or public clouds.
- Open source and open APIs allows the customer to avoid being locked in to a single vendor
- Built by a growing community of contributors
- Opportunities for vendors to develop their own solutions and services

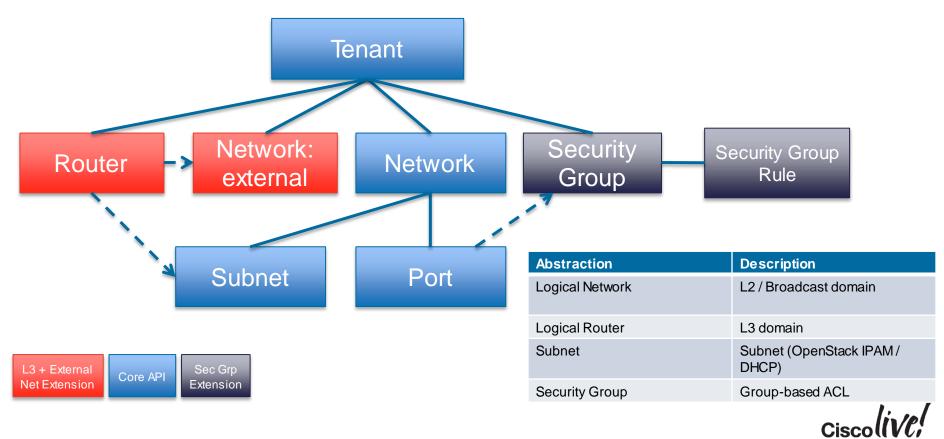


OpenStack Architecture


Management Network


Ciscol

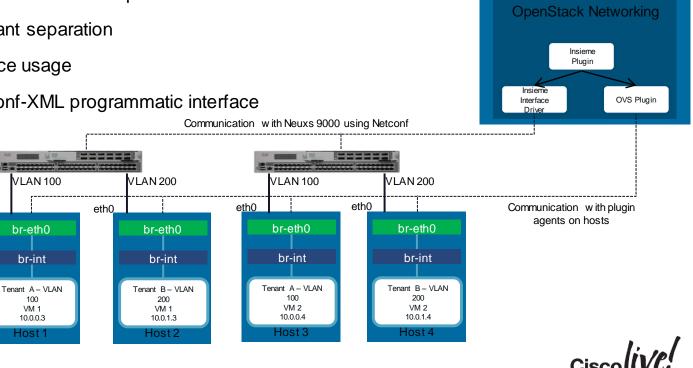
BRKDCT-3641 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 111


OpenStack Plugin Model

- Cisco plugin supports multiple sub-plugins
- Modular L2 (ML2) evolution of Neutron
- Allow multiple plug-ins to exist as sub-plugin drivers

OpenStack Neutron Model

OpenStack ML2 Architecture Diagram

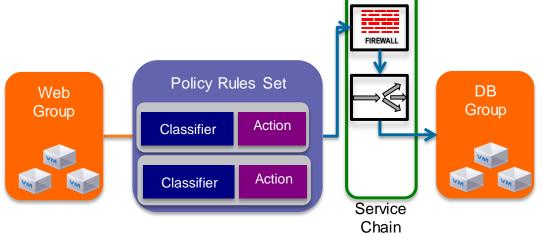

Neutron Server													
ML2 Plug-in				API Extensions									
Type Manager				Mechanism Manager									
GRE TypeDriver	VLAN TypeDriver	VXLAN TypeDriver	Cisco APIC	Cisco Nexus	Microsoft Hyper-V	Layer 2 Population	Linux Bridge	Open vSwitch	:				

OpenStack Network (Neutron) Plugin

- Enables fully automated compute, storage and network resource orchestration
- Support for Havana, Icehouse & Juno OpenStack releases
- Enable VLAN-based tenant separation
- Enhance efficient resource usage
- Leverages NX-OS NetConf-XML programmatic interface

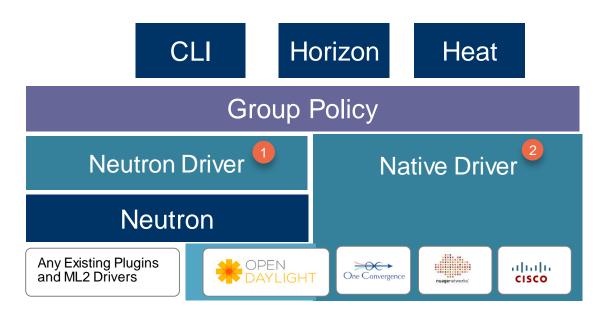
eth0

openstack


Controller Node

-	Networks		Openstack CLOUD SOFTWARE			
openstack	Networks					
DASHBOARD	Name Subnets Asse	oclated Shared	Status Admin State	Actions		
Project	ProductionNet ProductionNet	et 3.3.3.0/24 No	ACTIVE UP	Edit Network More *		
CURRENT PROJECT	DevTestNet DevTestNet 1	.1.1.0/24 No	ACTIVE UP	Edit Network More *		
lanage Compute	StagingNet StagingNet 2	.2.2.0/24 No	ACTIVE UP	Edit Network More ~		
Overview	Displaying 3 items					
Instances						
Volumes					7 7	
Images & Snapshots						
Access & Security		Inseime_N9K# show	vlas			
Manage Network			vtan			
Networks		VLAN Name		Status Ports		
Routers		1 default		active Eth4/5		
Network Topology		232 q-232 233 q-233 234 q-234		active Eth4/1 active Eth4/1 active Eth4/1		
100		VLAN Type Vlan-m				
		1 enet CE 232 enet CE 233 enet CE 234 enet CE				
		Remote SPAN VLANs				
		Primary Secondar		Ports		
					C	

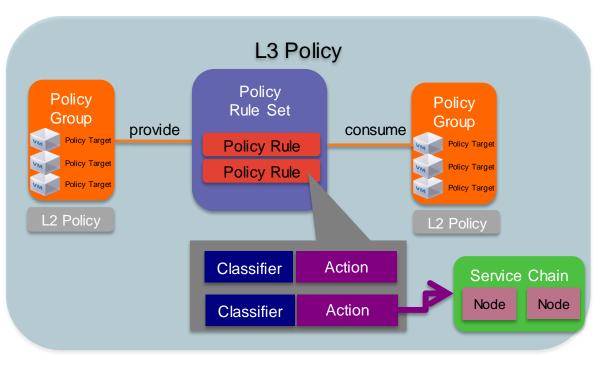
OpenStack Network (Neutron) Plugin


Introducing Group-Based Policy

- Intent-based API for describing application requirements
- Separates concerns of tenants and operators
- Captures dependencies between tiers of an application
- Plugin model
 - Supports mapping to Neutron APIs
 - Supports "native" SDN drivers

OpenStack GBP Overview

Open model that is compatible with ANY physical or virtual networking backends


Neutron Driver maps GBP to existing Neutron API and offers compatibility with any existing Neutron Plugin

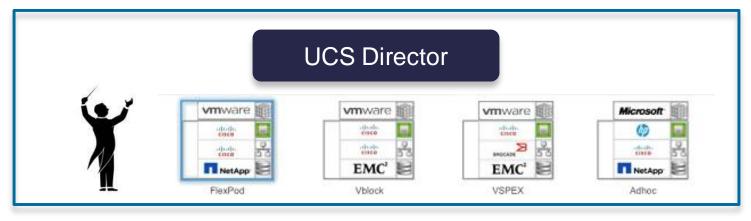
Native Drivers exist for OpenDaylight as well as multiple vendors (Cisco, Nuage Networks, and One Convergence)

Group-Based Policy Model

Policy Group: Set of endpoints with the same properties. Often a tier of an application.

Policy RuleSet: Set of Classifier / Actions describing how Policy Groups communicate.

Policy Classifier: Traffic filter including protocol, port and direction.


Policy Action: Behaviour to take as a result of a match. Supported actions include "allow" and "redirect"

Service Chains: Set of ordered network services between Groups.

L2 Policy: Specifies the boundaries of a switching domain. Broadcast is an optional parameter

L3 Policy: An isolated address space containing L2 Policies / Subnets

Cisco UCS Director Value

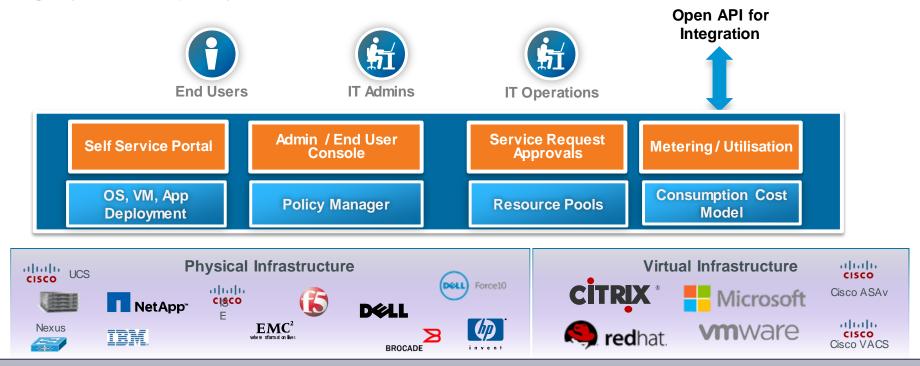
- Acts as orchestra conductor across: compute, network, storage & virtualisation
- Replaces manual management of each layer with automated workflows Helps to remove silos from IT teams and IT resources
- IT manages data centre resources as single "team" with unified management Across physical and virtual resources
- · Unfettered IT admins can now focus on new services for business

Seamless Infrastructure Management - UCS Director

Manage across facilities

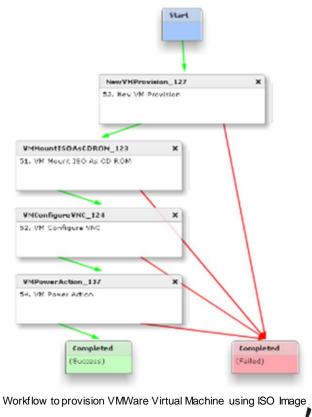
- Unify compute, network, storage physical and virtualised
- Rapid, low-cost infrastructure deployment based on application requirements
- Consistent, robust deployment every time

121

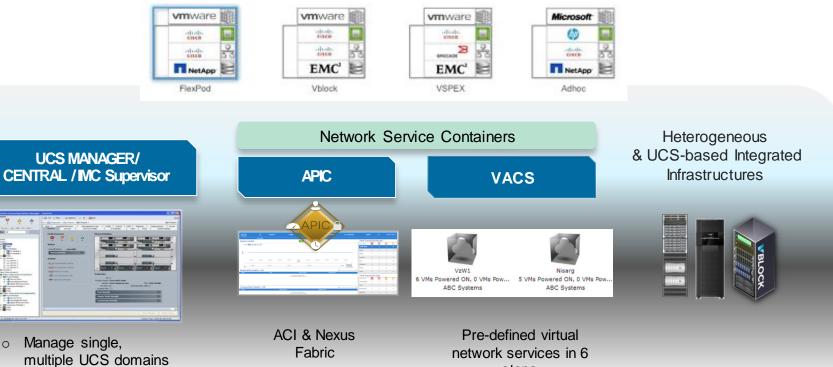

Application optimised infrastructure

- New! Hyper-V support for Citrix networking
- New! VACS Integrated application containers
- New! UCS Mini and E-Series support

UCS Director: Multi-Vendor Support


Agility and Simplicity for Virtualised and Bare-Metal IT Services

Centralised Lifecycle Management of Physical and Virtualisation Infrastructure


UCS Director - How Does it Work?

- Abstraction of applications, hardware and software into programmable tasks
- Tasks used to create automated workflows
 - API attached to task eliminating scripting
 - Pre-validated, run immediately after creation
- Workflows published into service catalog
- Dynamic orchestration that keeps business moving
- No other vendor that offers this capability

UCS Director

Centralised Data Centre Automation

steps

Cisco

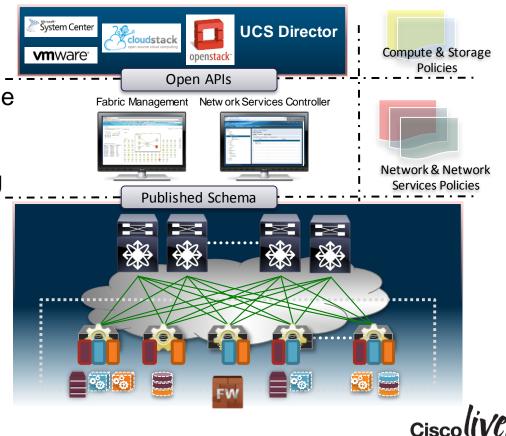
BRKDCT-3641 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 124

Branch/remote offices

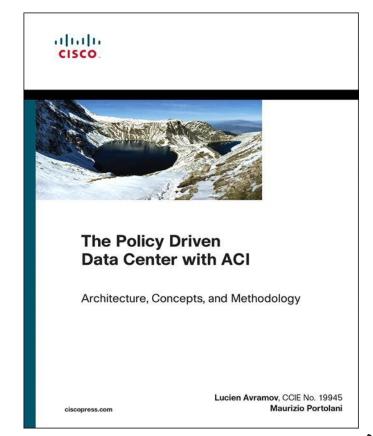
0

Conclusion – Data Centre Design Transition

53


11

Workload Automation and Open Environment


Advantages

- >Any workload, Anywhere, Anytime
- > Open Integration: Orchestration
- >Automated Scalable Provisioning
- ➤Workload aware fabric

Call to Action

- Visit the World of Solutions for
 - Cisco Data Centre
 - Walk in Labs
 - Technical Solution Clinics
- Meet the Engineer
- Lunch time Table Topics
- DevNet zone related labs and sessions
- Recommended Reading: for reading material and further resources for this session, please visit <u>www.pearson-books.com</u>

Q&A

53

l con

DODD

PREM

-

17

.....

Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2015 T-Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site
 <u>http://showcase.genie-connect.com/clmelbourne2015</u>
- Visit any Cisco Live Internet Station located throughout the venue

T-Shirts can be collected in the World of Solutions on Friday 20 March 12:00pm - 2:00pm

Learn online with Cisco Live! Visit us online after the conference for full access to session videos and presentations. <u>www.CiscoLiveAPAC.com</u>

Thank you.

#