

TOMORROW starts here.

Data Centre Interconnect with Overlay Transport Virtualisation

BRKDCT-2049

Mitch Roberts

Systems Engineer

#clmel

OTV – Overlay Transport Virtualisation Simplifying Data Centre Interconnect

Any Workload

Anytime

Anywhere

Session Objectives

- The main goals of this session are:
- This session features a detailed analysis of the architectural aspects and deployment benefits behind OTV
- The attendees will learn how OTV is aimed at providing Layer 2 connectivity beyond the Layer 3 boundary while maintaining the failure containment and operational simplicity that the Layer 3 boundary provides
- The attendees will get a deep knowledge of how the OTV control-plane and data-plane work to provide the VLAN extension

Session Non-objectives

- This session does not include:
- In depth discussion of Path Optimisation technologies (DNS, LISP, etc.)
- Storage extension considerations associated to DCI deployments
- Workload mobility application specific deployment considerations
- In depth discussion Multicast

Please Visit – Great Content + Vods

http://www.ciscolive.com/global/

Related Cisco Live Events

Session-ID	Session Name
BRKDCT-2334	Real World Data Centre Deployments and Best Practices
BRKDCT-2615	How to Achieve True Active-Active Data Centre Infrastructures
BRKDCT-2218	Small to Medium Data Centre Designs
BRKRST-1601	Fast Track to Fast-IT – A Practical Approach

Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
- OTV Design Considerations & New Features

Distributed Data Centres Goals

- Ensure business continuity
- Distributed applications
- Seamless workload mobility
- Maximise compute resources

Data Centre Interconnect

Traditional Layer 2 Extensions

BRKDCT-2049 © 2015 Cisco and/or its affiliates. All rights reserved. **Cisco** Public

Challenges in Traditional Layer 2 VPNs

Flooding Behaviour

Unknown Unicast for MAC propagation
Unicast Flooding reaches all sites

Pseudo-wire Maintenance

- Full mesh of Pseudo-wire is complex
- Head-End replication is a common problem

Multi-Homing

- Requires additional Protocols & extends STP
- Malfunctions impacts multiple sites

Technology Pillars

in sh

53

Gm

DODD

No Pseudo-Wire State Maintenance

Optimal Multicast Replication

Dynamic Encapsulation

13

Multipoint Connectivity

Point-to-Cloud Model

BRKDCT-2049 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public

Protocol Learning

Automated Multi-Homing

Site Independence

Ciscolive

14

OTV – Overlay Transport Virtualisation Simplifying Data Centre Interconnect

- Nexus 7000 First platform to support OTV (since 5.0 NXOS Release)
- ASR 1000 Now also supporting OTV (since 3.5 XE Release)

Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture
 - Terminology
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - Mobility
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features

Terminology OTV Devices and Interfaces

Edge Device

- Performs all OTV functionality
- Usually located at the Aggregation Layer or at the Core Layer
- Support for multiple OTV Edge Devices (multi-homing) in the same site

Internal Interface

- Site facing Interfaces of the Edge Devices
- Carry VLANs extended through OTV
- Regular Layer 2 interfaces
- No OTV configuration required
- Supports IPv4 & IPv6

Terminology OTV Devices and Interfaces

- Join Interface
 - One of the uplink of the Edge Device
 - Point-to-point routed interface (physical interface, sub-interface or port-channel supported)
 - Used to physically "join" the Overlay network
 - No OTV specific configuration required
 - IPv4 only
- Overlay Interface
 - Virtual interface with most of the OTV configuration
 - Logical multi-access multicast-capable interface
 - Encapsulates Layer 2 frames in IP unicast or multicast

Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
 - Terminology
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - Mobility
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features

OTV Control Plane Building the MAC Tables

- No unknown unicast flooding (selective unicast flooding in 6.2)
- Control Plane Learning with proactive MAC advertisement
- Background process with no specific configuration
- IS-IS used between OTV Edge Devices

OTV Control Plane

Neighbour Discovery and Adjacency Formation

- Before any MAC address can be advertised the OTV Edge Devices must:
 - Discover each other
 - Build a neighbour relationship with each other
- Neighbour Relationship built over a transport infrastructure:
 - Multicast-enabled (all shipping releases)
 - Unicast-only (from NX-OS release 5.2 & IOS-XE 3.9)

OTV Control Plane Neighbour Discovery (over Multicast Transport)

OTV Control Plane (Multicast Transport)

OTV Control Plane (Multicast Transport)

OTV Control Plane

Multicast Transport

OTV Control and Data Plane over Multicast Transport

- Use a High-Available Multicast Rendez-Vous Point (RP) configuration
 - PIM Anycast (RFC4610) or MSDP (Multicast Source Discovery Protocol)
- Requirements to Control Plane
 - PIM Any-Source-Multicast (ASM) Sparse-Mode
- Requirements to Data Plane
 - PIM Source-Specific-Multicast (SSM) or BiDir

```
Multicast for OTV on
                                Nexus 7000
feature pim
interface loopback 0
ip pim spare-mode
ip address 192.168.1.100/32
interface loopback 1
ip pim sparse-mode
ip address 10.254.254.n1-x/32
ip pim rp-address 192.168.1.100 group-list 239.1.1.1
ip pim anycast-rp 192.168.1.100 10.254.254.n1
ip pim anycast-rp 192.168.1.100 10.254.254.n2
ip pim ssm range 232.239.1.0/24
interface port-channel1
# This Interface peers with the OTV Join Interface
ip igmp version3
```

* "n" in the last Octet reflects a unique IP address per Router joining the PIM Anycast Group

Example:

OTV Control Plane Neighbour Discovery (Unicast-only Transport)

Ideal for connecting a small number of sites

BRKDCT-2049

• With a higher number of sites a multicast transport is the best choice

OTV Control Plane

BRKDCT-2049

 Establishment of control plane adjacencies between OTV Edge Devices (multicast or unicast transport):

dc1-agg-7k1#	show otv adjacent	су			
Overlay Adjac	ency database				
Overlay-Inter	face Overlay100	:			
Hostname	System-ID	Dest Addr	Up Time	Adj-State	
dc2-agg-7k1	001b.54c2.efc2	20.11.23.2	15:08:53	UP	
dc1-agg-7k2	001b.54c2.e1c3	20.12.23.2	15:43:27	UP	
dc2-agg-7k2	001b.54c2.e142	20.22.23.2	14:49:11	UP	

Unicast MAC reachability information:

OTV Data Plane Encapsulation

- 42 Bytes overhead to the packet IP MTU size (IPv4 packet)
 - Outer IP + OTV Shim Original L2 Header (w/out the .1Q header)
- 802.1Q header is removed and the VLAN field copied over to the OTV shim header
- Outer OTV shim header contains VLAN, overlay number, etc.

Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
 - Terminology
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - Mobility
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features

Spanning-Tree and OTV Site Independence

- Site transparency: no changes to the STP topology
- Total isolation of the STP domain
- Default behaviour: no configuration is required
- BPDUs sent and received ONLY on Internal Interfaces

Unknown Unicast and OTV

No Longer Unknown Unicast Storms Across the DCI

- No requirements to forward unknown unicast frames
- Assumption: end-host are not silent or uni-directional

Default behaviour: no configuration is required

No MAC 3 in the MAC Table

Unknown Unicast and OTV

Selective Unicast Flooding

- Some Application requirement to forward unknown unicast frames
- Selective Unicast Flooding can be enabled per mac address
- Default behaviour: no unknown unicast forwarding

New Release 6.2

Controlling ARP Traffic ARP Neighbour-Discovery (ND) Cache

- ARP cache maintained in Edge Device by snooping ARP replies
- First ARP request is broadcasted to all sites. Subsequent ARP requests are replied by local Edge Device
- Timeout can be adjusted (as per NX-OS 6.1(1))
- Drastic reduction of ARP traffic on DCI
- ARP spoofing can be disabled
- IPv4 only feature
- Default behaviour: no configuration is required

OTV-a(config)# interface overlay 1 OTV-a(config-if-overlay)# otv arp-nd timeout 70

Configures the time, in seconds, that an entry remains in the ARP-ND cache. The time is in seconds varying from 60 to 86400. The default timeout value is 480 seconds.

Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
 - Terminology
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - Mobility
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features

OTV Multi-homing Fully Automated Multi-homing

- No additional protocols required (i.e. BGP)
- OTV site-vlan used to discover OTV neighbour in the same site
- Authoritative Edge Device (AED) Election takes place
- Extended VLANs are split across the AEDs
- The AED is responsible for:
 - MAC address advertisement for its VLANs
 - Forwarding its VLANs' traffic inside and outside the site

Hardened Multi-homing Introducing OTV Site-identifier

- Same site devices must use common site-identifier
- Site-id information is included in the control plane
- Makes OTV multi-homing more robust and resilient
 - Site Adjacency and Overlay Adjacency are now both leveraged for AED election
- An overlay will not come up until a site-id is configured
 - Site and Overlay Adjacency are both leveraged for AED election

38

AED

L3 L2

OTV Multi-homing VLANs Split across AEDs

- Automated and deterministic algorithm
- In a dual-homed site:
 - Lower IS-IS System-ID (Ordinal 0) = EVEN VLANs
 - Higher IS-IS System-ID (Ordinal 1) = ODD VLANs

	show otv vlan		
OTV Ex	tended VLANs and Edge	e Device State Info	ormation (* - AED)
VLAN	Auth. Edge Device	Vlan State	Overlay
100	East-b	inactive (Non AED)	Overlay100
101*	East-a	active	Overlay100
102	East-b	inactive (Non AED)	Overlav100
OTV-b#	show oty vlan	· · · · ·	
OTV-b#	show otv vlan tended VLANs and Edge	e Device State Info	prmation (* - AED)
OTV-b# OTV Ex VLAN	show otv vlan tended VLANs and Edge Auth. Edge Device	e Device State Info Vlan State	ormation (* - AED) Overlay
OTV-b# OTV Ex VLAN 100*	show otv vlan tended VLANs and Edge Auth. Edge Device 	e Device State Info Vlan State active	Overlay Overlay Overlay100
OTV-b# OTV Ex VLAN 100* 101	show otv vlan tended VLANs and Edge Auth. Edge Device East-b East-b East-a	 Device State Info Vlan State active inactive (Non AED) 	Overlay Overlay Overlay100 Overlay100

Remote OTV Device MAC Table							
VLAN	MAC	IF					
100	MAC 1	IP A					
101	MAC 2	IP B					

OTV Multi-homing AED and Broadcast Handling

- 1. Broadcast reaches all the Edge Devices within the site
- 2. Only the AED forwards the traffic to the Overlay
- 3. All the Edge Devices at the other sites receive the broadcast
- 4. At the remote sites only the AEDs forward it into the site

Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
 - Terminology
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - Mobility
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features

OTV and MAC Mobility MAC Moving and OTV Updates (1)

1. Workload moved between Data Centre sites

BRKDCT-2049 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 42

OTV and MAC Mobility MAC Moving and OTV Updates (2)

- 1. Workload moved between Data Centre sites
- 2. Workload is detected in East DC and OTV control plane is triggered

OTV and MAC Mobility MAC Moving and OTV Updates (3)

- 1. Workload moved between Data Centre sites
- 2. Workload is detected in East DC and OTV control plane is triggered
- 3. East to West OTV data plane traffic allows to update the MAC tables of the L2 devices in West Site

Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
 - Terminology
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - Mobility
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features

L2 Multicast Traffic Between Sites

Multicast Enabled Transport

- OTV can leverage the multicast support available in the transport network to optimise the delivery of the multicast traffic for the VLANs stretched across sites
- Three steps:
 - 1. Automated mapping of the sites' multicast groups to a range of multicast groups in the transport network
 - 2. Creation of the Multicast state information at the OTV Edge Devices
 - 3. Sites' Multicast traffic delivered over the Overlay

L2 Multicast with Multicast Transport Step 1 – Mapping of the Site Multicast Group

- The site multicast groups are mapped to a SSM group range in the core
- Each (S1,Gs1) maps to a different SSM group in round-robin fashion

L2 Multicast with Multicast Transport

Step 2 – Multicast State Creation

L2 Multicast with Multicast Transport Step 3 – Multicast Packet Flow

L2 Multicast with Multicast Transport Multicast Groups in the Core

OTV can leverage the benefits of a multicast-enabled transport for both control and data planes. The following summarises the requirements for a multicast transport:

- Control group Single PIM-SM or PIM-Bidir group used to form adjacencies and exchange MAC reachability information
- Data groups Range of SSM groups used to carry multicast data traffic generated by the sites

interface Overlay100
 otv join-interface e1/1
 otv control-group 239.1.1.1
 otv data-group 232.192.1.0/24
 otv extend-vlan 100-150

The right number of SSM groups to be used depends on a tradeoff between the amount of multicast state to be maintained in the core and the optimisation of Layer 2 multicast traffic delivery

Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
 - Terminology
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - Mobility
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features

QoS and OTV Marking on Encapsulation

On Encapsulation

- CoS bits (802.1p) copied to the OTV shim header
- If IP traffic: The original (inner) DSCP value is also copied to "outer" DSCP

QoS and OTV Marking on De-capsulation

- On De-capsulation
 - CoS value is recovered from the OTV shim and added to the 802.1Q header
- Original CoS and DSCP are both preserved
- OTV Control Traffic is statically marked at CoS = 6/DSCP = 48

Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
 - Terminology
 - Control Plane and Data Plane
 - Failure Isolation
 - Multi-homing
 - Mobility
 - L2 Multicast Forwarding
 - QoS and Scalability
 - Path Optimisation
- OTV Design Considerations & New Features

Path Optimisation Egress Routing Optimisation

Hot Potato Routing

Path Optimisation Egress Routing with LAN Extension

- Extended VLANs typically have associated HSRP groups
- By default, only one HSRP router elected active, with all servers pointing to HSRP VIP as default gateway

Egress Routing Localisation FHRP Filtering Solution

BRKDCT-2049

- Filter FHRP with combination of VACL and MAC route filter
- Result: Still have one HSRP group with one VIP, but now have active router at each site for optimal first-hop routing

Path Optimisation Optimal Routing Challenges

BRKDCT-2049

- · Layer 2 extensions represent a challenge for optimal routing
- Challenging placement of gateway and advertisement of routing prefix/subnet

Path Optimisation

Is it relevant to my Data Centre model?

- Logical Data Centre or Physical Data Centre?
- High Availability or Disaster Recovery?

© 2015 Cisco and/or its affiliates. All rights reserved. BRKDCT-2049 Cisco Public

Specific Use-Case IPv6 and OTV

Reference

Release 5.2 and above

- IPv6 Unicast Forwarding and Multicast Flooding supported across OTV
 - Requires to disable optimised multicast forwarding (OMF) in IGMP snooping on OTV ED
- IPv6 Transport Network (Join Interface & Source Interface, not yet supported)

Ingress Routing Localisation

Challenge

- Subnets are spread across locations
- Subnet information in the routing tables is not specific enough
- Routing doesn't know if a server has moved between locations
- Traffic may be sent to the location where the application is not available

Options

- DNS Based
- Route Injection
- LISP Locator/ID Separation Protocol

For more details on LISP and OTV Deployment see: BRKDCT-2131

OTV – Overlay Transport Virtualisation Simplifying Data Centre Interconnect

Any Workload

Anytime

Anywhere

Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
- OTV Design Considerations & New Features

OTV Support ASR1000

- OTV has been introduced in IOS XE 3.5 (Nov 2011)
- To use OTV on ASR1000, you require:
 - Advance Enterprise Image or Advance IP Service + OTV feature license
- ASR1k <-> N7k Inter-Site Interoperability has been tested
 - No ASR1k <-> N7k Multihoming Support (Intra-Site Interoperability)

• OTV on ASR1000 Use Cases are:

- Legacy Deployments where DC may still be Catalyst based
- New Small Data Centre and/or Disaster Recovery Sites where Main DC is equipped with Nexus 7000
- OTV with Layer-3 Encryption where MACSec is no option for Inter-DC Encryption

OTV Support ASR 1000

- New Features for IOS-XE 3.9
 - OTV Adjacency Server (unicast)
 - OTV with LISP ESM
 - RPVST STP Support
- New Features for IOS-XE 3.10
 - Portchannel for join interface
 - VRF Aware
 - Subinterface for join interface
 - Layer 2 portchannel

Specific Use-Case

Transparent Firewall and extended Inside & Outside VLANs

- Transparent/Bridged Firewall is separating OTV extended VLANs
- OTV is sharing the same MAC address per Edge-Device

Specific Use-Case

Transparent Firewall and extended Inside & Outside VLANs

- OTV is sending PIM hellos with source of 0.0.0.0 destination 224.0.0.13
- Hello is sourced from OTV Edge Device (VDC) MAC Address

OTV compared to FabricPath

Is FabricPath a valid Solution to replace OTV

- OTV is purpose build for Data Centre Interconnects
 - Cisco Validated Designs (CVDs)
 - Specific Data Centre Interconnect features
- On Data Centre Interconnect, FabricPath is NOT so Plug and Play
 - No specific DCI functions
 - Designs gotchas but do not impact all customers
 - Multidestination Trees capacity planning is key

• FabricPath can be a valid Data Centre Interconnect solution when:

- Short distances between Data Centres
- Multicast is not massively used
- If you know and accept where your Traffic Flows (Multidestination Trees)

OTV compared to FabricPath

- Yes, but Data Centre Interconnect is NOT LAN Switching
- Customer's constraints/needs are unique
- Scoping is based on
 - Application Involved
 - Number of DC sites, meshing, distances, bandwidth requirements
 - Customer Perception
 - Traffic Flows (Unicast, Multicast & Flooding)

	Operations Simplicity	Failure Isolation	Transport Failure Detection	3+ Sites Optimisation	High Availability	L2 Functions	L3 Unicast Functions	Multicast Functions	Scalability
ΟΤV	√	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	√	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	√
FabricPath	$\checkmark\checkmark$	×	×	\checkmark	√	\checkmark	\checkmark	√	√
Stacking	√	\checkmark	×	×	×	√	√	√	×
VSS	√	\checkmark	×	×	√	\checkmark	\checkmark	√	√
vPC	✓	\checkmark	×	×	√	\checkmark	×	×	√

Routed Uplinks

to Core

New Feature for OTV in NX-OS 6.2

Nexus 7000 Hardware Support

F3 Support for OTV in 6.2(6)

F/M-Series interface

F1 and F2e linecards have the ability to be internal interfaces

Release 6.2(6)

New Features for OTV Tunnel Depolarisation & Secondary IP

- Secondary IP command introduced
 - Configured within interface, not OTV interface
- Introduction of multiple IPs results in tunnel depolarisation

OTV-a (config-if) # sh otv OTV-a(config-if) # ip address 2.100.11.1/24 secondary OTV Overlay Information Disabling IP Redirects on port-channel11 :secondary Site Identifier 0000.0000.0011 configured. OTV-a(config-if) # sh run int poll Overlay interface Overlay1 !Command: show running-config interface port-channel VPN name : Overlay1 !Time: Wed Mar 27 23:05:21 2013 VPN state : UP Extended vlans : 25-50 72-227 (Total:182) version 6.2(2)Control group : 224.1.1.0 Data group range(s) : 232.1.0.0/24 interface port-channel11 Broadcast group : 224.1.1.0 no ip redirects Join interface(s) : Pol1 (2.100.11.100) ip address 2.100.11.100/24 Secondary IP Addresses: : 2.100.11.1 ip address 2.100.11.1/24 secondary Site vlan : 1 (up) ip ospf network point-to-point AED-Capable : Yes1 ip router ospf 1 area 0.0.0.0 : Multicast-Reachable Capability ip igmp version 3
New Features for OTV

VLAN Translation: Translation through transit VLAN

- When a different VLAN is used at multiple sites
- Usually for 3 or more sites

Release 6.2

New Features for OTV VLAN Translation: Translation through transit VLAN

For Your Reference

OTV-a(config)# int overlay1 OTV-a(config-if-overlay)# **otv vlan mapping 100 to 400**

OTV-a(config-if-overlay)# sh run int overlay1

!Command: show running-config interface Overlay1
!Time: Fri Mar 29 19:01:04 2013

version 6.2(2)

```
interface Overlay1
  otv isis hello-multiplier 9
  otv join-interface port-channel11
  otv control-group 224.1.1.0
  otv data-group 232.1.0.0/24
  otv extend-vlan 25-50, 72-497
  otv vlan mapping 100 to 400
  no shutdown
```

OTV-a(config-if-overlay)# sh otv vlan-mapping Original VLAN -> Translated VLAN

100 -> 400

OTV-B(config)# int overlay1 OTV-B(config-if-overlay)# otv vlan mapping 200 to 400 OTV-B(config-if-overlay)# sh run int overlay1

!Command: show running-config interface Overlay1
!Time: Fri Mar 29 19:02:29 2013

version 6.2(2)

interface Overlay1
 otv isis hello-multiplier 9
 otv join-interface port-channel21
 otv control-group 224.1.1.0
 otv data-group 232.1.0.0/24
 otv extend-vlan 25-50, 72-497
 otv vlan mapping 200 to 400
 no shutdown

OTV-B(config-if-overlay)# sh otv vlan-mapping Original VLAN -> Translated VLAN

200 -> 400

OTV Convergence Small and Large Scale Targets (Extreme Failures)

New Release 6.2

Challenges in Traditional Layer 2 VPNs Solved by OTV

Flooding Behaviour

UGantwoh Plaine Based for MAC paoping ation
Unicast Flooding reaches all sites

Pseudo-wire Maintenance

- **EylhamishErfdapsudation**re is complex
- Head-End replication is a common problem

Multi-Homing

- Reventives Addottomated Prot**Multi&Hextring**'s STP
- Malfunctions impacts multiple sites

Agenda

- Distributed Data Centres: Goals and Challenges
- OTV Architecture Principles
- OTV Design Considerations & New Features

OTV – Overlay Transport Virtualisation Simplifying Data Centre Interconnect

Any Workload

Anytime

Anywhere

Where can OTV help YOU simplify Data Centre Interconnects?

Participate in the "My Favorite Speaker" Contest Promote Your Favorite Speaker and You Could be a Winner

 Promote your favorite speaker through Twitter and you could win \$200 of Cisco Press products (@CiscoPress)

- You can submit an entry for more than one of your "favorite" speakers
- Don't forget to follow @CiscoLive and @CiscoPress
- View the official rules at http://bit.ly/CLUSwin

Continue Your Education

- Demos in the Cisco Campus
- Walk-in Self-Paced Labs
- Meet the Expert 1:1 meetings

Q&A

53

l con

DODD

PREM

-

17

.....

Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2015 T-Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site
 <u>http://showcase.genie-connect.com/clmelbourne2015</u>
- Visit any Cisco Live Internet Station located throughout the venue

T-Shirts can be collected in the World of Solutions on Friday 20 March 12:00pm - 2:00pm

Learn online with Cisco Live! Visit us online after the conference for full access to session videos and presentations. <u>www.CiscoLiveAPAC.com</u>

Thank you.

#