

# TOMORROW starts here.



#### Cisco UCS Network Performance Optimisation and Best Practices for VMware

BRKCOM-2015

Chris Dunk

Technical Marketing Engineer, Cisco UCS

Ciscolive!

#clmel

#### Agenda

- Server to Server East West Traffic Flow Architecture
  - Why it is important
  - UCS Flat Network Topology Comparing to Legacy
- Overview of UCS B series Connectivity Flexibility
- Latency Test Configuration and Results
- VM Migration Configurations Test Results for East-West Traffic Flow
- Best Practices and Observations to Achieve the Greatest Impact on East-West Traffic



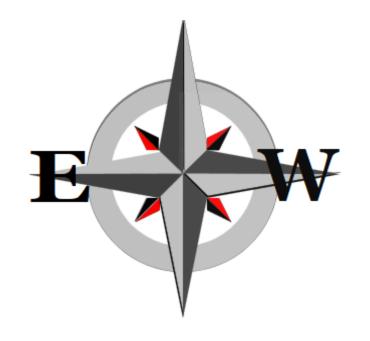


# East-West Traffic Architecture

BBIN

53

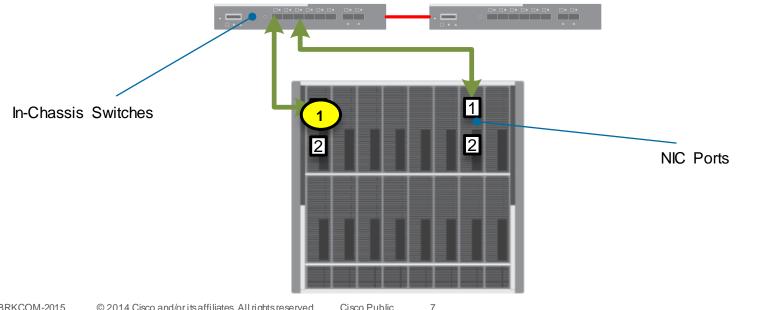



#### East-West Traffic Flow, Why Do You Care?

- East-West Data Traffic flow represents increasing amount of data centre LAN traffic, up to 80%
  - Growth of virtualisation
  - New requirements for back end communication networks, Storage, Big Data, Cloud
- Traffic between servers inside the data centre
- Application Architectures are changing distributed API
- Traffic between servers and storage inside the data centre
  - Storage synchronisation, cluster file systems
  - Data centre storage virtualisation
- Most common use cases are virtualisation live migration
  - VMware vMotion
  - MSFT Hyper-V Live Migration

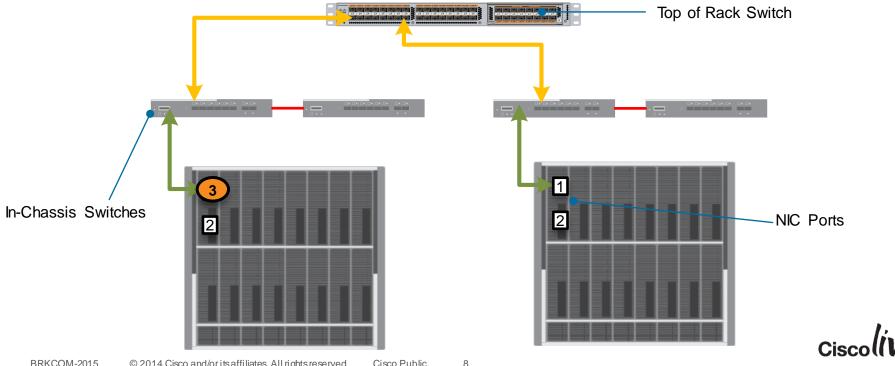


#### **East-West Traffic Flow Requirements**


- Provide low latency server to server communication
  - Need for a low latency predictable fabric
  - Reduce the number of hops between servers
- Highly available active/active data paths
- Large Layer 2 flat network design
- Host bandwidth flexibility and control

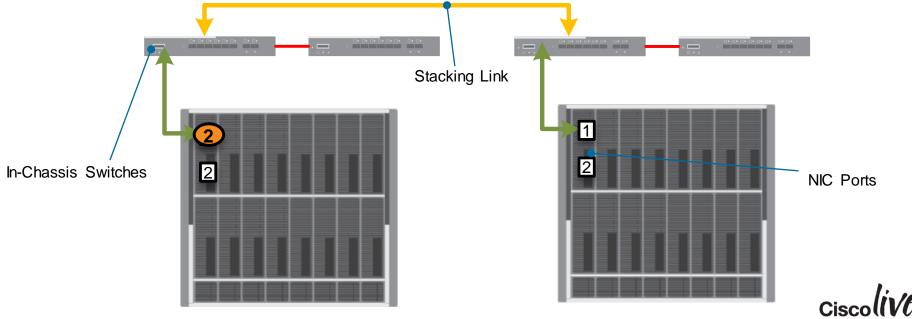





#### Legacy Single Chassis East-West Traffic

- Single Chassis IS the best case scenario
- Traffic between servers has to go through a L2 Switch inside the chassis
- Traffic does not traverse the midplane




#### Legacy Multi Chassis East-West Traffic

- Common Data Centre Example with multiple Chassis connected to ToR Switch
- Traffic blade to blade will go through multiple switches



#### Legacy Multi Chassis Stacking East-West Traffic

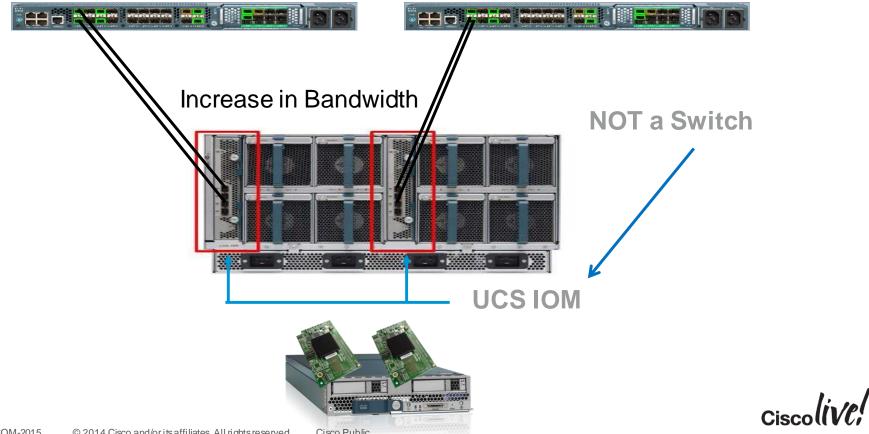
- Hits multiple switches even with stacking
- As more stacking links are added latency and hops increase
- Hops become non-deterministic and Spanning Tree is required



9

#### Legacy East-West Traffic Truths

- Server to Server communication optimised for only a SINGLE chassis of blades
- Chassis IO modules ARE switches (except for B22 and pass-thru modules)
- Requires many chassis switches that must be managed
- Blade Chassis to Chassis communication requires at least 2 or more hops
  - Including switch stacking
  - Increased latency
  - Non deterministic
- Customer data centres are larger than 1 chassis; must deal with this issue
- Intra chassis communication represents a small percentage of actual data flow

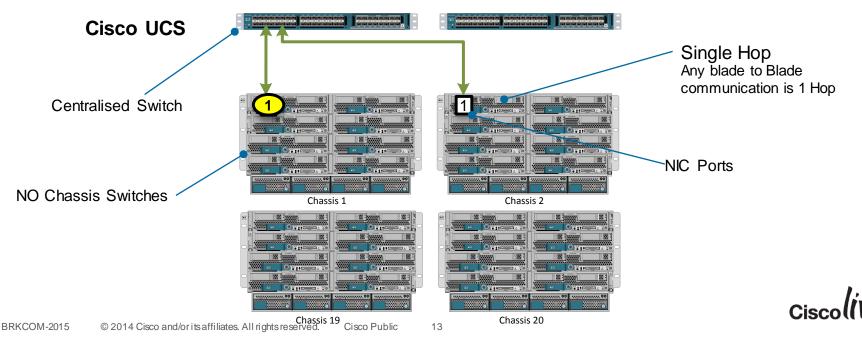



#### UCS Advantage Summary

- Cisco UCS offers a single flat L2 compute network for systems up to 160 servers
- Cisco UCS offers 'right sizing' the networking providing bandwidth where it's needed, when it's needed
- Simple and flexible, logical configuration of blade I/O connectivity managed with UCS Manager

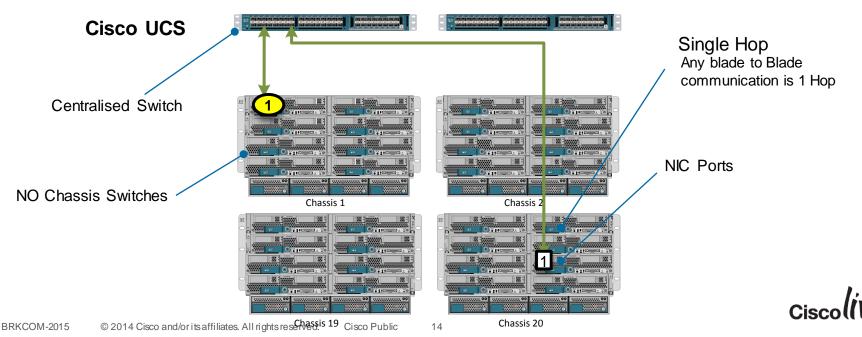


#### UCS Advantage Fabric Topology




BRKCOM-2015 © 2014 Cisco and/or its affiliates. All rights reserved.

Cisco Public


#### UCS Optimised Flat East-West Traffic

- Cisco UCS changes the legacy constraints
- Industries flattest L2 blade to blade network 160 servers
- Single hop and predictable latency between ANY server in domain



#### UCS Optimised Flat East-West Traffic

- Cisco UCS changes the legacy constraints
- Industries flattest L2 blade to blade network 160 servers
- Single hop and predictable latency between ANY server in domain



#### **UCS East-West Traffic Truths**

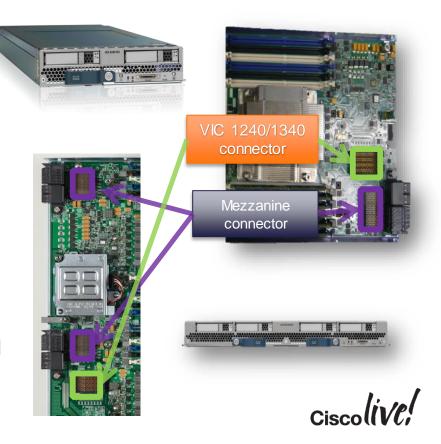
- Server to Server communication optimised for 160 blades across 20 chassis
- Chassis IO Modules are NOT switches
  - Fabric Extenders have no switching ASICs
  - Extension of the Fabric Interconnect



- Blade Chassis to Chassis communication requires only 1 hop
  - Lower system latency
  - Latency and performance predictable across entire domain
- NO Spanning Tree
  - Legacy stacking technologies require spanning-tree
  - Most legacy switches are non configurable



# **Cisco B-Series Networking Flexibility**


BBIN

53



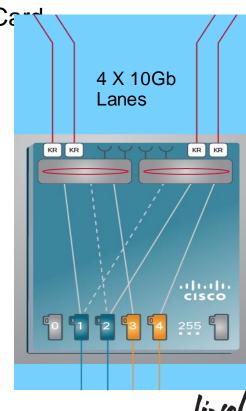
#### **UCS B-Series Network Connectivity**

- UCS B200 M3/M4 Half Width blades
  - Aggregate bandwidth up to 80Gb
  - (1) mLOM connector
  - (1) Mezzanine slot
- UCS B260/420/440 Full Width blades
  - Aggregate bandwidth up to 160Gb
  - (1) mLOM connector
  - (2) Mezzanine slot
- UCS B460 Full Width Double Slot Blade
  - Whopping 320Gb of aggregate bandwidth
  - (6) Mezz slots, 2 for VIC 1240 and 4 additional slots



#### **UCS Half-Height Blade Networking Options**

- Cisco UCS Fabric Extender (FEX)
  - 2204 IOM 10Gb
    - 4 Uplinks / 16 Downlinks
  - 2208 IOM 10Gb
    - 8 Uplinks / 32 Downlinks
- Cisco Virtual Interface Card (VIC)
  - VIC1240/1340 10Gb
    - Up to 4 10Gb Interfaces
    - Offers 40Gb of connectivity PER Blade
  - Port Expander adds 4 additional 10Gb ports
  - VIC1280/1380 10Gb
    - Up to 8 10Gb Interfaces
    - Offers 80Gb of connectivity PER Blade
- All without adding expensive and complicated chassis switches








#### UCS B Series Bandwidth Scaling

- UCS B200 M3/M4 connectivity with Virtual Interface Mezz Car
  - VIC1240/1340 ships standard with B200 on Mezz Slot
  - Provides 2 10GbE links when paired to IOM 2204
  - Provides 4 10GbE links when paired to IOM 2208
- Optional Port Expander for VIC1240/1340
  - Enables 4 additional 10GbE links
  - Passive Connector
  - Fits into Mezz slot B200
- Simple to scale bandwidth
  - NO switches in chassis
  - Just increase chassis links
  - Add expander or mezz in blades



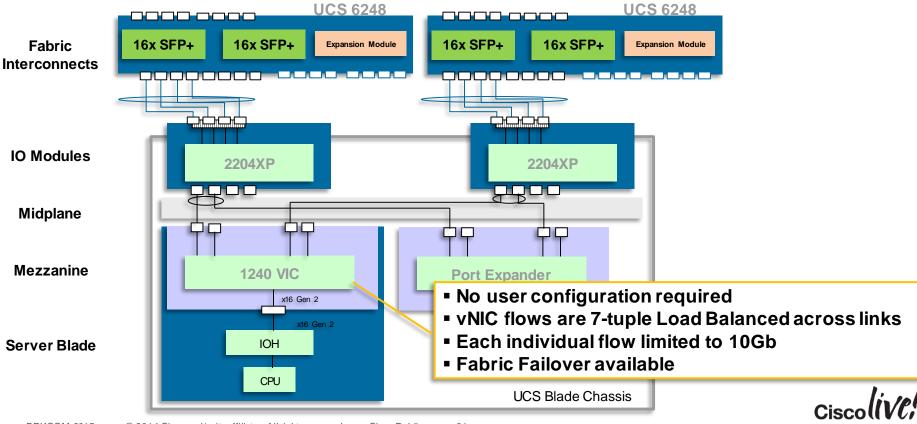
8 X 10Gb Lanes

1 1.1 1

KR KR KR KR

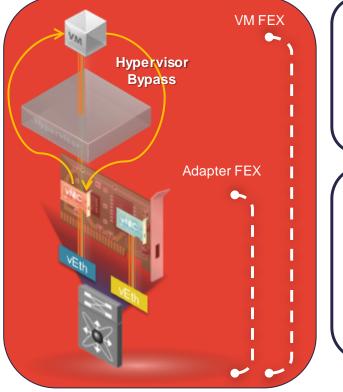
### UCS B Series VIC Configuration

- VIC host ports are programmable by the Service Profile
  - OS Independent
  - No complicated BIOS configuration required
  - Place the vNICs on ANY fabric desired not limited by Hardware placement


20

- Up to 256 vNIC/vHBA interfaces can be created
  - 8 reserved for internal use
  - OS limits apply
- VIC Fabric Failover (Cisco only Feature)
  - HW based NIC Teaming fail on fault
  - Enabled on each vNIC
  - Does not apply for vHBA




| VNICs        |  |                   |   |             |    |
|--------------|--|-------------------|---|-------------|----|
|              |  |                   |   |             |    |
| -I vNIC Eth1 |  | 00:25:85:00:A1:1E | 1 | 1           | A  |
| -I vNIC Eth2 |  | 00:25:85:00:A1:0E | 2 | 2           | A  |
| –🚺 vNIC Eth3 |  | Derived           | 5 | Unspecified | BA |
| -I vNIC Eth4 |  | Derived           | 6 | Unspecified | AB |
| -I vNIC Eth5 |  | Derived           | 7 | Unspecified | BA |
| -I vNIC Eth6 |  | Derived           | 8 | Unspecified | В  |

#### Block Diagram: Blade to FI Connection Test Setup



#### Virtualised I/O

Improved Performance and Visibility with Cisco FEX Architecture



#### **Features:**

- Adapter FEX split a physical NIC into multiple logical NICs
- VM-FEX extends Adapter FEX technology to virtual machine
- Based on open Standards

#### **Benefits:**

- · Same functionality in Physical and Virtual environments
- Increased bandwidth utilisation by sharing physical interface to multiple Applications and/or VMs
- Improved Performance and dynamic network & security policy mobility during VM migration with VM-FEX



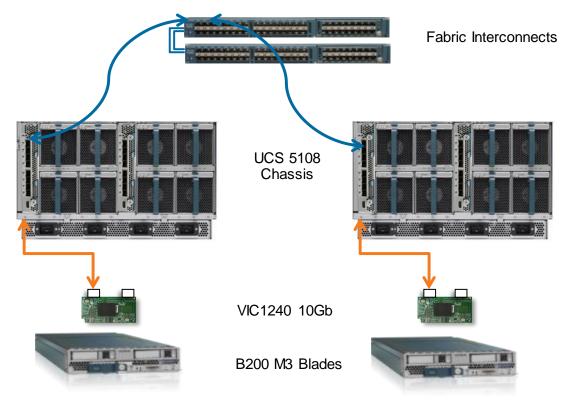
# Network Latency Test Setup and Results

53



#### Latency Test Setup

- 2 X UCS B200 M3 with VIC1240
- 2 X 5108 Blade Chassis with 2204 Fabric Extenders
  - 1 link IOM to FI
- 1 10Gb VIC port configured on each host connected to fabric A
- Chassis to Chassis Local network communication
  - Single Fabric (A) used on all tests unless noted
- Purpose of the test
  - Determine if UCS design has more host based latency than other fabrics
  - Answer claims that Cisco UCS has higher latency for applications



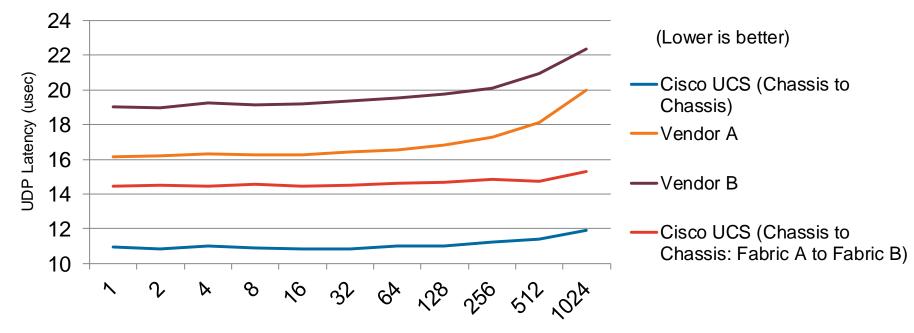

#### Latency Test Setup

- Server BIOS optimised for Performance
  Max Performance memory and CPU set
- OS NIC parameters set for performance
  - RX/TX Coalescing Timer OFF
    - Forces HW to be used to measure latency
  - Interrupts localised to CPU Socket
- NetPerf used for host to host packet generation
- Ran 3 Latency measurement tests
  UDP, TCP, TCP RTT
- 9K MTU shown for all test results
  - 1500 MTU was also tested but not shown



#### **Test Architecture Overview**





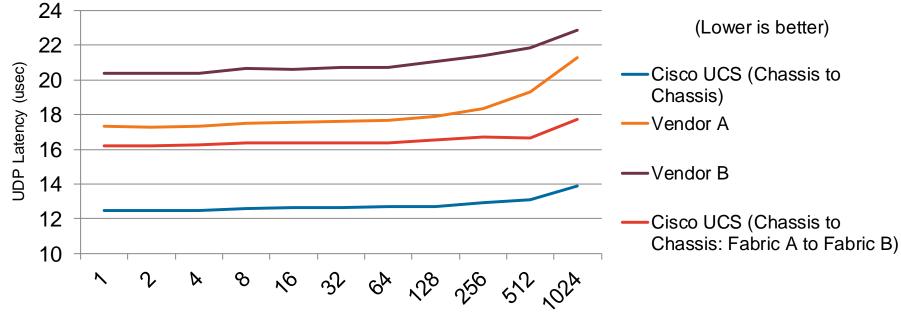

#### **UDP Latency Test**

- UDP Latency
  - UDP connectionless, reliable delivery no required
  - Fire and Forget
- Application Examples
  - Streaming audio and video
  - VolP
  - Heartbeats
  - NFS
- Incrementally increased payload size from 1 byte to 1024 bytes
- Cisco UCS Chassis to Chassis results
  - Legacy both single chassis and chassis to chassis represented



#### **UDP Latency Test Results Chassis to Chassis**




Payload Size Bytes



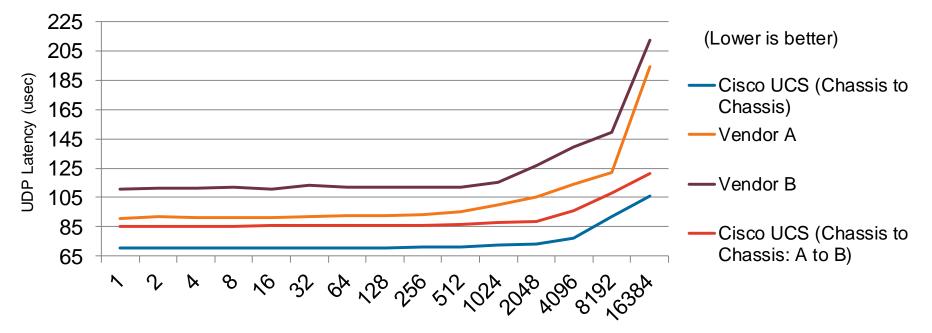


BRKCOM-2015 © 2014 Cisco and/or its affiliates. All rights reserved. Cisco Public 34

#### **TCP Latency Test Results Chassis to Chassis**



Payload Size Bytes


Source: http://www.cisco.com/en/US/prod/collateral/ps10265/le\_40202\_ibmlatencypb-130717.pdf; http://www.cisco.com/en/US/prod/collateral/ps10265/le\_40201\_pb\_hplatency\_130717.pdf; http://www.cisco.com/c/dam/en/us/products/collateral/switches/nexus-7000-series-switches/network\_latency.pdf

#### TCP Transaction RTT Latency Test

- TCP Transaction RTT
  - Represents the TCP connection opening, sending, receiving, closing complete round trip time
  - Ping Pong example
  - Measuring Transactional Performance
- New connection for each request/response pair, transactional workload
- Mimics web server HTTP protocol
- Incrementally increased payload size from 1 byte to 16384 bytes
  - Large payload sizes will expose switch port buffer issues
- Cisco UCS Chassis to Chassis results
  - Legacy both single chassis and chassis to chassis represented



#### TCP RTT Latency Test Results Chassis to Chassis



Payload Size Bytes

Source: http://www.cisco.com/en/US/prod/collateral/ps10265/le\_40202\_ibmlatencypb-130717.pdf; http://www.cisco.com/en/US/prod/collateral/ps10265/le\_40201\_pb\_hplatency\_130717.pdf; http://www.cisco.com/c/dam/en/us/products/collateral/switches/nexus-7000-series-switches/network\_latency.pdf

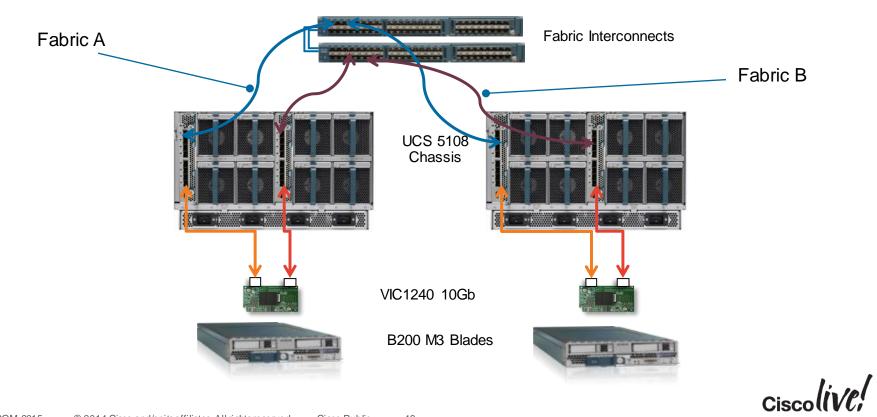


# VM Migration Test Setup and Results

BBIN

53

SIN SI




#### VM Migration Test Setup

- B200 M3 with VIC1240 + Port Expander
  - 2 X 2680 Intel Processors
  - Host 64GB RAM
  - 1,2 or 4 Ethernet vNICs configured
- 2 X 5108 Blade Chassis with 2204 Fabric Extenders
  - 1, 2 and 4 links to FI tested
- Windows 2008R2 Guest VMs running Prime95 load tool
  - Each VM running 100% memory and processor capacity
  - ESXi Host memory fully utilised
- 2 different test stacks
  - 8 VMs with 8GB memory each
  - 4 VMs with 16GB memory each



#### **Test Architecture Overview**



### VM Migration Test Methodology

- Baseline Migration test overview
  - 2 IOM links to FI
  - 1vNIC configured and presented to VMware
  - Single vSwitch for vMotion
  - Traffic only on Fabric A for vMotion

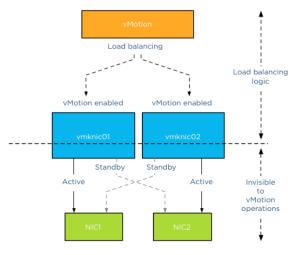
- Why
  - Simple test setup that anyone could reproduce
    - No special benchmarking modifications or tuning
  - Mirror real world working scenarios
    - Customer inspired problem statement
    - Place busy hosts into maintenance mode and vacate VMs quickly
  - Find out the truth of claims being made against Cisco UCS network design

### VM Migration Test Reliability

#### • How

- VMs migrated between two blade nodes on two different chassis
- PowerShell script to start migrations and capture times
- Averaged times of all samples across multiple test runs
- Pause delay between each move
- Quality
  - Obtain insight on system performance with multiple iterations of the tests
  - Each scripted test was run 5 times with 100 samples each (500 migrations minimum)
  - Nearly 30,000 samples captured across all tests
  - All samples used to calculate average migration time
    - Balances out vCenter variances
  - After each test run all hosts sat until idle and VMs rebooted




#### Multiple VMkernel Interfaces for vMotion

- VMware introduced multi-nic vMotion with ESX 5.0
  - using multiple 10Gb VMkernel ports designated for vMotion traffic
- Simple to configure
  - Add Physical NIC Ports to vSwitch
  - Add and configure 1<sup>st</sup> vMotion VMkernel portgroup
    - Configured NIC Teaming select 1<sup>st</sup> vmnic to active and 2<sup>nd</sup> vmnic to standby
  - Add and configure 2<sup>nd</sup> vMotion VMkernel portgroup
    - Configured NIC Teaming select 2<sup>nd</sup> vmnic to active and 1<sup>st</sup> vmnic to standby

| vSw     | itch0 Properties |                 |                           |                        |  |
|---------|------------------|-----------------|---------------------------|------------------------|--|
| irts    | Network Adapters |                 |                           |                        |  |
| 1000    | figuration       | Summary         | -                         |                        |  |
|         |                  | 120 Ports       | Subnet Mask:              | 255.255.255.0          |  |
|         | VLAN153          | Virtual Machine |                           | View Ro.               |  |
| Ö       | VM Network       | Virtual Machine | Effective Policies        |                        |  |
| 0       | vMotion_2        | vMotion and IP  | Security                  |                        |  |
| 0000000 | vMotion_1        | vMotion and IP  | Promiscuous Mode:         | Reject                 |  |
| 9       | Management Net   | vMotion and IP  | MAC Address Changes:      | Accept                 |  |
| í –     |                  |                 | Forged Transmits:         | Accept                 |  |
| í –     |                  |                 | Traffic Shaping           | Accept                 |  |
|         |                  |                 |                           |                        |  |
| 1       |                  |                 | Average Bandwidth:        | -                      |  |
| í –     |                  |                 | Peak Bandwidth:           | **                     |  |
| í –     |                  |                 | Burst Size:               |                        |  |
|         |                  |                 | Failover and Load Balan   |                        |  |
| 1       |                  |                 | Load Balancing:           | Port ID                |  |
| 1       |                  |                 | Network Failure Detection | :: Link status only    |  |
|         |                  |                 | Notify Switches:          | Yes                    |  |
|         |                  |                 | Faiback:                  | Yes                    |  |
|         |                  |                 | Active Adapters:          | vmnic0                 |  |
|         |                  |                 | Standby Adapters:         | vmnic1, vmnic2, vmnic3 |  |

#### Multiple VMkernel Interfaces for vMotion

- Mark extra NICs as standby instead of unused
  - If you lose a physical NIC no network connection issue
  - Keeps the vmotion network stable
  - NIC failure traffic is routed to other connections



| VMknic  | Active NIC | Standby NIC |
|---------|------------|-------------|
| vmknic0 | NIC1       | NIC2, NIC3  |
| vmknic1 | NIC2       | NIC1, NIC3  |
| vmknic2 | NIC3       | NIC1, NIC2  |



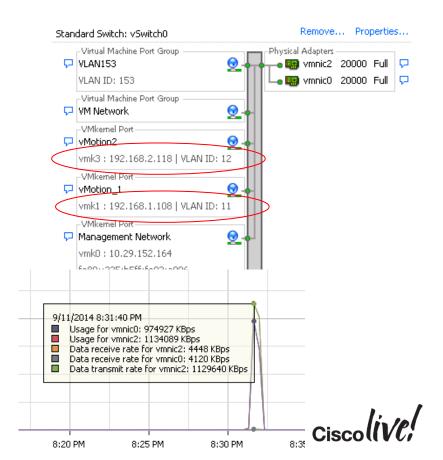
#### vMotion Pairing Behaviour

- vMotion vmknic pairings are arbitrary setup by vCenter
  - No guarantee that any vmknic can communicate with any other specific vmknic
  - Placing on different subnets, likely to fail when pairings change
  - No preferred pairings of vmknic ports
  - Based on vmknic link speed and provision order (either of which may change depending on host behaviour)
  - Persistent only for a single vMotion
- ALL NICs in a cluster for vMotion must be able to communicate
  - Primary and secondary vmknics must be able to communicate on failure
- vMotion assigns a default interface on One vmknic for connection management
- VMware does not support dedicating vMotion on a specific fabric
  - No ability to prefer pairings of vmknics on a specific fabric

#### Multiple VMkernel Interfaces for vMotion

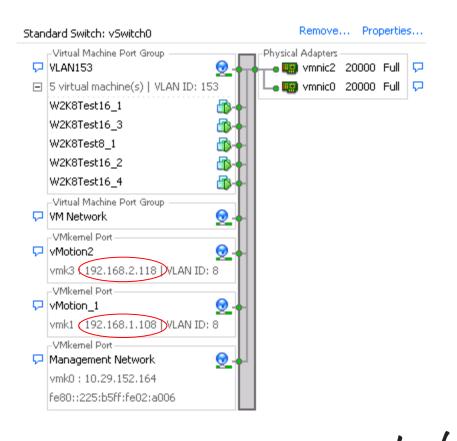
- VMware vMotion why is it not working the way I want?
- Do I put them on different subnets?
  - NO this is not supported by Vmware
  - This may work but not guaranteed, may fail at any time
- VMKernel NIC pairs are made first by
  - Highest speed
  - Order of creation on the ESXi host
- vMotion distributes across all available vmknics
  - even when a single VM is migrated multiple links are used




#### vMotion Behaviours

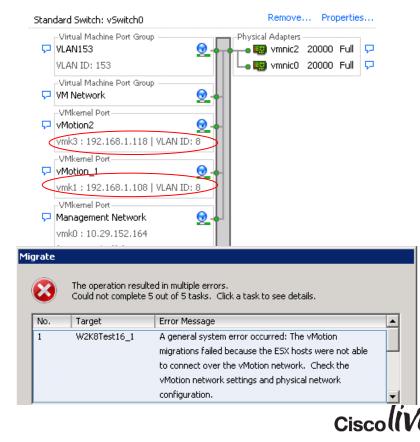
- Links speed matters
  - vMotion requires 10Gb links for 8 migrations
  - Mixing NIC speeds results in reduction of 4 migrations
  - Multi NIC vMotion still caps at 8 migrations
- vMotion operations
  - Work at the vmknic level not physical layer
  - No knowledge of pnic status
  - Trusts connection from vmknic between source and destination
- Ensure successful configuration
  - Build the vNICs in the same order on all hosts
  - Make all connections identical (speed, MTU, fabric connection)
  - Leverage UCSM LAN connection policies




#### Sample Setup Scenarios

- UCS upstream 5K configured VLANs
- <u>Separate</u> VLAN and IP ranges
- All vMotion vmknic ports are pingable from each host
- Successful migrations with no errors
- Would not work if remote host lost primary NIC and standby was used with different subnet/VLAN




#### Sample Setup Scenarios

- UCS Private VLANs not configured on 5K
- <u>Same</u> VLAN <u>different</u> IP ranges
- All vMotion vmknic ports are pingable from each host
- Successful migrations with no errors
- Would not work if remote host lost primary NIC and standby was used with different subnet

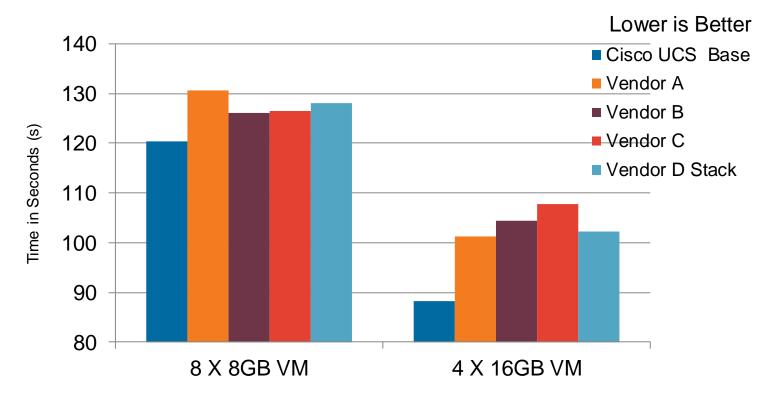


#### Sample Setup Scenarios

- UCS Private VLANs not configured on 5K
- <u>Same</u> Subnet, <u>Same</u> IP ranges
- Some vMotion vmknic ports are NOT pingable from each host
  - vMotion2 vmknic are not reachable on each host from each other
  - All other interfaces work (local and vMotion 1 vmknic)
- Vmknic pairings going over two different fabrics that are not connected
- Migrations do NOT Work



# Demo Multi NIC Setup




#### **East-West Traffic Test Objectives**

- NOT a Performance benchmark of vMotion itself
- NOT a study to discover why vCenter behaves the way it does
- NOT a networking tuning benchmark effort
- Compare equally configured Legacy systems and Cisco UCS
- Performance impact on Cisco UCS with fabric tunings
  - UCS has many options and capabilities for traffic engineering
- Only observations made during testing outlined
  - Enable customers to choose configurations that provide the greatest impact to their environment



#### Migration Test Results Cisco and Legacy



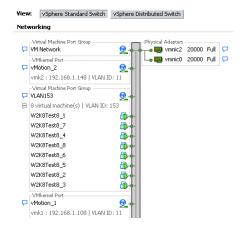
Source: http://www.cisco.com/en/US/prod/collateral/ps10265/le\_40202\_ibmlatencypb-130717.pdf: http://www.cisco.com/en/US/prod/collateral/ps10265/le\_40201\_pb\_hplatency\_130717.pdf; http://www.cisco.com/c/dam/en/us/products/collateral/switches/nexus-7000-series-switches/network\_latency.pdf



#### **Communication Performance Observations**

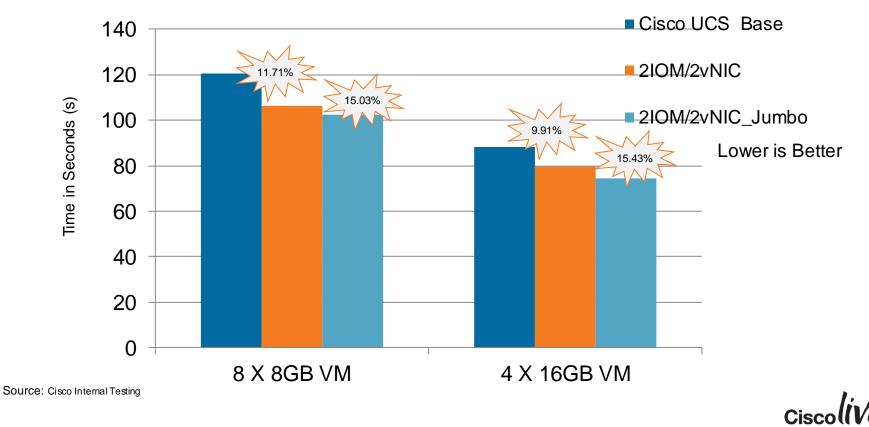
- Viewing link performance during the migration tests observed
  - Real time performance between blades and uplink ports to the other side
  - Used built in measurement tools for other vendors switches to view real time data

- UCS with 1 Link between IOM and FI with 1 vNIC
  Averaged 9.5Gb/s
- Other vendor intra-chassis switch performance
  - Averaged 5.5 and 6 Gb/s




#### **Migration Base Configuration**

- Base system using 2 IOM uplinks
- 1 vNIC configured with a single vSwitch dedicated for vMotion
- Traffic running over a single dedicated fabric


- What if we create two VMkernel ports on the same vSwitch?
  - All traffic on Fabric A
  - 2 VMkernel portgroups configured

• What if we configure Jumbo frames?





#### Migration Cisco UCS Test Base vs 2 vNIC



#### **IOM Traffic Example**

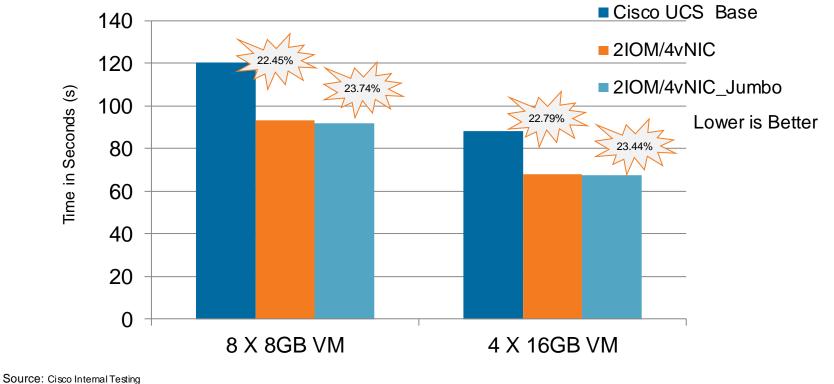
- Traffic is load balanced across all the available ports
  - VIC to IOM
  - IOM to FI

Single Fabric A

Average Bandwidth 13-14Gb/s

|   | fex-1# s                                                                 | -++<br>how    | platform so                                                     | oftware woods                                             | ide rate                                                                           | ++ |                                                             | +                       |                                       | +                             | +                                                         | ++                |
|---|--------------------------------------------------------------------------|---------------|-----------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------|----|-------------------------------------------------------------|-------------------------|---------------------------------------|-------------------------------|-----------------------------------------------------------|-------------------|
|   | +<br>  Port<br>                                                          | -++<br>  <br> | Tx Packets                                                      | Tx Rate  <br>(pkts/s)                                     | Tx Bit<br>Rate                                                                     | ++ | Rx Packets  <br>                                            | Rx Rate  <br>  (pkts/s) | Rx Bit<br>Rate                        | +<br>  Avg Pkt<br>  (Tx)<br>- |                                                           | ++<br>   <br> Err |
| < | 0-BI<br>  0-CI<br>  0-VI1<br>  0-NI0<br>  0-HI27<br>  0-HI26<br>  0-HI19 | ii            | 25  <br>10  <br>2927298  <br>2505339  <br>17  <br>0  <br>273030 | 5  <br>2  <br>585459  <br>501067  <br>3  <br>0  <br>54606 | 4.52Kbps<br>5.66Kbps<br>7.21Gbps<br>6.16Gbps<br>5.52Kbps<br>0.00 bps<br>213.19Mbps |    | 21  <br>12  <br>340801  <br>306456  <br>0  <br>1<br>2116818 | 2<br>68160              | 20.43Kbps<br>250.64Mbps<br>201.70Mbps | 334<br>  1519<br>  1517       | 104<br>  1044<br>  439<br>  391<br>  0<br>  164<br>  1515 |                   |
| < | +                                                                        |               | 520805  <br>                                                    | 104161                                                    | 258.97Mbps                                                                         |    | 3316024                                                     | 663204                  | 1                                     | '                             | 1520<br>                                                  | +                 |




#### Migration

- What if we configure more VMkernel ports (4) for vMotion?
  - All traffic on Fabric A
  - 4 VMkernel portgroups configured

• What are the results of Jumbo and non-Jumbo frames being enabled?



#### Migration Cisco UCS Test Base vs 4 vNIC





#### IOM Traffic Example 4vNIC

- Traffic is load balanced across all the available ports note no change in host port connections
- vCenter can run 4 independent TCP Flows

Single Fabric A Average Bandwidth up to 15Gb/s

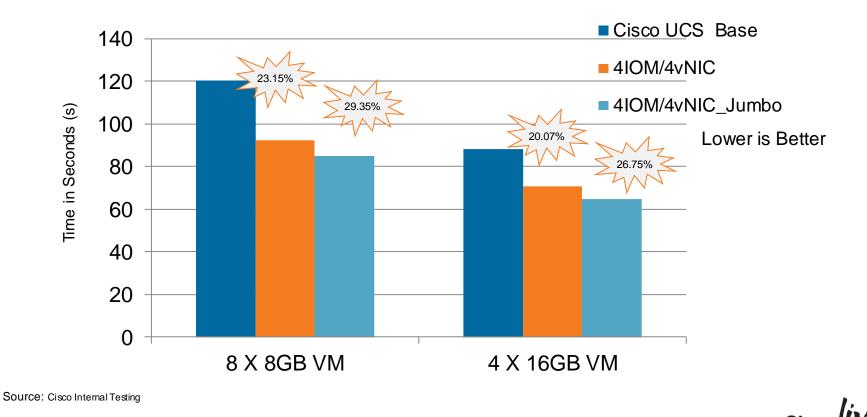
| Port          | 11 7     | X Packets | Tx Rate  | ı       | Tx Bit     | Rx Pac | kets I  | Rx Rate  |                         | Rx Bit                | l àszo        | r Pkt         | Avq Pkt    | - 1    |
|---------------|----------|-----------|----------|---------|------------|--------|---------|----------|-------------------------|-----------------------|---------------|---------------|------------|--------|
|               |          | .<br>  .  | (pkts/s) |         | Rate       | IX Fac |         | (pkts/s) | j,                      | Rate                  | · -           | , Γ.C.<br>Γχ) | (Rx)<br>   | Err    |
| +<br>  O-BI   | ·-++<br> | ++<br>13  | 2        | ·+-<br> | 2.75Kbps   |        | -+<br>9 | 1        | -+-                     | 1.74Kbps              | +             | 112           | +<br>  101 | ·+<br> |
| 0-CI          |          | 14        | 2        | I       | 3.96Kbps   |        | 15      | 3        |                         | 11.13Kbps             | 1             | 157           | 444        |        |
| O-NI1         |          | 238325    | 47665    | I       | 38.28Mbps  | 274    | 0896    | 548179   | 1                       | 6.78Gbps              | 1             | 80            | 1527       | 1      |
| O-NIO         |          | 339500    | 67900    | I       | 54.54Mbps  | 350    | 7941    | 701588   | $\langle \cdot \rangle$ | 8.68Gbps              | $\mathcal{V}$ | 80            | 1527       | 1      |
| 0-HI27        | '        | 3         | 0_       |         | 576.00 bps |        | O Į     | 0        |                         | 0.00 bps              | 1             | 100           | 0          | 1      |
| 0-HI19        | )        | 2971312   | 594262   | I       | 7.35Gbps   | 19     | 3220    | 38644    |                         | 31.85 <b>M</b> pps    | 1             | 1527          | 80         | 1      |
| <u>8-HI18</u> | }        | 3275421   | 655084   | I       | 8.11Gbps   | 38     | 4595    | 76919    |                         | <del>61.</del> 76Mbps | 1             | 1527          | 80         | 1      |



#### Migration

• What if we increase the IOM links from 2 to 4 and increase the number of VMkernel ports to 4?

• What if we configure jumbo frames?


| +      | ++         | +        |                              | ++  |           |        |            |        |   |       |       |            |  |
|--------|------------|----------|------------------------------|-----|-----------|--------|------------|--------|---|-------|-------|------------|--|
| Port   | Tx Packets | Tx Rate  | Tx Bit                       | R:  | x Packets |        |            |        |   |       | NI (0 |            |  |
| I      |            | (pkts/s) | Rate                         |     |           |        |            |        | + |       |       |            |  |
| +      | ++         | +        |                              |     |           |        | +          |        |   |       | -+    |            |  |
| O-BI   | 14         | 2        | 2.90Kbps                     |     | 10        | 2      | 1.92Kbps   | 109    |   | 100   |       |            |  |
| 0-CI   | 13         | 2        | 9.48Kbps                     |     | 20        | 4      | 34.43Kbps  | 436    | 1 | O56   |       |            |  |
| 0-NI3  | 99257      | 19851    | 16.05Mbps                    |     | 1020626   | 204125 | 2.53Gbps   | 81     | 1 | 532   |       |            |  |
| 0-NI2  | 320113     | 64022    | 345.97 <b>M</b> bps          |     | 1939933   | 387986 | 4.81Gbps   | 655    | 1 | 530   |       |            |  |
| 0-NI1  | 228915     | 45783    | 227 <b>.</b> 40 <b>M</b> bps |     | 1744105   | 348821 | 4.33Gbps   | 600    | 1 | 533   |       |            |  |
| O-NIO  | 118380     | 23676    | 19.15 <b>M</b> bps           |     | 1289526   | 257905 | 3.19Gbps   | 81     | 1 | 529   |       |            |  |
| 0-HI27 | 12         | 2        | 3.36Kbps                     |     | 0         | 0      | 0.00 bps   | 155    |   | 0     |       |            |  |
| 0-HI26 | 1          | 0        | 480.00 bps                   |     | 0         | 0      | 0.00 bps   | 283    |   | 0     |       |            |  |
| 0-HI19 | 3060155    | 612031   | 7.59Gbps                     |     | 367310    | 73462  | 313.20Mbps | 1530   | 1 | 512   | 1     |            |  |
| 0-HI18 | 2915766    | 583153 I | 7.24Gbps                     | 1.1 | 399383    | 79876  | 295.35Mbps | 1 1533 | 1 | 442 I |       | <b>/</b> , |  |

(FINAL POSITION TBD)

Uplink #: Link status:

SFP:

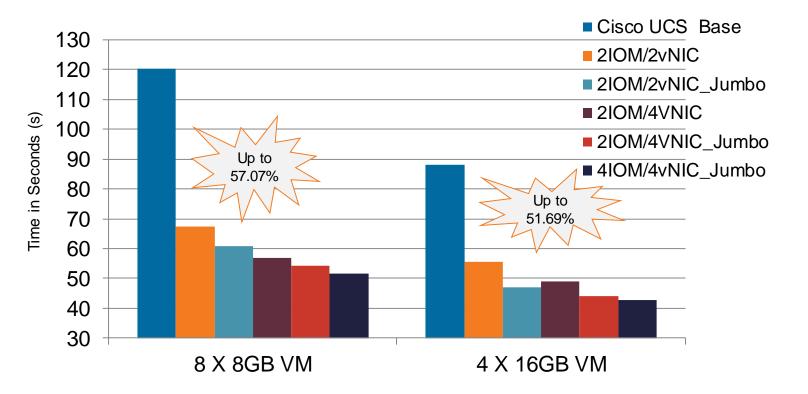
#### Migration Cisco UCS Test Base vs 4 vNIC\_4IOM



#### Migration

- What happens now if we run the same tests but spread the VMkernel ports over both UCS Fabrics?
  - Configured both 2 and 4 VMkernel portgroups
  - Spread the Physical NIC ports over UCS Fabric A and Fabric B

- Measure using 2 IOM to FI links then 4 IOM to FI links
- Enable Jumbo frames, what happens?


| vNICs                     |                   |               |              |           |  |  |  |  |  |  |  |  |
|---------------------------|-------------------|---------------|--------------|-----------|--|--|--|--|--|--|--|--|
| A Filter = Export B Print |                   |               |              |           |  |  |  |  |  |  |  |  |
| Name                      | MAC Address       | Desired Order | Actual Order | Fabric ID |  |  |  |  |  |  |  |  |
| -I vNIC Eth0              | 00:25:85:02:A0:06 | 3             | 1            | A         |  |  |  |  |  |  |  |  |
| -I vNIC Eth1              | 00:25:85:02:A0:07 | 4             | 2            | В         |  |  |  |  |  |  |  |  |
| -I vNIC Eth2              | 00:25:85:00:A1:3E | 5             | 3            | A         |  |  |  |  |  |  |  |  |
| -1 vNIC Eth3              | 00:25:85:00:A1:2E | 6             | 4            | В         |  |  |  |  |  |  |  |  |

#### IOM Dual Fabric Traffic Example

- Traffic is load balanced across all the available ports
- Multiple VMKernel vNICs are configured assigned to Fabric A and Fabric B

|     | 10.29.152<br>Port |     | uTTY<br>( Packets  <br> | Tx Rate<br>(pkts/s) | Tx Bit<br>  Rate | R<br>       | x Packets       | Rx Rate<br>  (pkts/s)<br>+ | Rx Bit<br>  Rate<br>+ | Fabric A           | <b>N</b> |         | Bandwidth Average combined fabrics |           |  |  |  |  |
|-----|-------------------|-----|-------------------------|---------------------|------------------|-------------|-----------------|----------------------------|-----------------------|--------------------|----------|---------|------------------------------------|-----------|--|--|--|--|
| i o | )-BI              | 11  | 65 [                    | 13                  | 11.12Kbps        | 11          | 57              | 11                         | 19.60Kbps             |                    |          |         | COMPINE                            |           |  |  |  |  |
|     | )-CI              |     | 19 j                    | 3                   |                  |             | 17              | ·<br>I 3                   |                       |                    |          |         | 18Gb/s                             | Gh/s      |  |  |  |  |
| j o | )-NI1             |     | 13 j                    | 2                   |                  |             | 1949040         | 389808                     | 4.82Gbps              |                    |          |         | 1000/3                             |           |  |  |  |  |
| i o | )-NIO             | 11  | 244                     | 48                  | 198.25Kbps       | 11          | 2406090         | 481218                     | 5.95Gbps              |                    |          |         |                                    |           |  |  |  |  |
| 1 0 | )-HI27            |     | 0                       | 0                   | 0.00 bps         | 11          | 1               | 0                          | 288.00 bps            |                    |          |         |                                    |           |  |  |  |  |
| 1 0 | )-HI26            | + + | 1                       | 0                   | 152.00 bps       | 11          | 1               | 0                          | 352.00 bps            |                    |          |         |                                    |           |  |  |  |  |
|     | )-HI19            |     | 1941444                 | 388288              | 4.80Gbps         |             | 3125            | 625                        | 565.10Kbps            |                    |          |         |                                    |           |  |  |  |  |
| 1.0 | )-HI18            |     | 2412413                 | 482482              | 5.97Gbps         |             | 2949            |                            | 401.62Kbps            |                    |          |         |                                    |           |  |  |  |  |
|     |                   |     |                         |                     | ·                | <u>a</u> 10 | J.29.152.96 - I | PuTTY                      |                       |                    |          |         |                                    |           |  |  |  |  |
|     |                   |     |                         |                     |                  |             | 11              |                            | (pkts/s)              | Rate               |          |         | (pkts/s)                           | Rate      |  |  |  |  |
|     | Fabric B          |     |                         | +                   | ++               |             | +               |                            | -++                   |                    | +        | ++      |                                    |           |  |  |  |  |
|     |                   |     |                         | i au                |                  | 0-          | BI              | 19                         | 3                     | 3.97Kbps           |          | 12      | 2                                  | 4.24Kbps  |  |  |  |  |
|     |                   |     |                         |                     |                  | 0-          | CI              | 12                         | 2                     | 3.76Kbps           | 11       | 17      | 3                                  | 13.43Kbps |  |  |  |  |
|     |                   |     |                         |                     |                  | O-          | NI1             | 563691                     | 112738 j              | 90.95 <b>M</b> bps |          | 2492069 | 498413                             | 6.17Gbps  |  |  |  |  |
|     |                   |     |                         |                     |                  | I O-        | NIO             | 292840 j                   | 58568 j               | 47.32Mbps          |          | 1782000 | 356400                             | 4.41Gbps  |  |  |  |  |
|     |                   |     |                         |                     |                  | I O-        | HI27            | 8 I                        | 1                     | 2.89Kbps           |          | 0       | i o                                |           |  |  |  |  |
|     |                   |     |                         |                     |                  |             | HI26 II         | 1                          |                       | 632.00 bps         |          | 0       |                                    | · • •     |  |  |  |  |
|     |                   |     |                         |                     |                  |             | HI19            | 2996389 j                  |                       |                    |          | 417501  |                                    | 67.32Mbps |  |  |  |  |
|     |                   |     |                         |                     | $\leq$           |             | ·HI18           | 1276838                    | 255367                | 3.16Gbps           |          | 443908  |                                    | 71.60Mbps |  |  |  |  |
|     |                   |     |                         |                     |                  |             |                 | 1210030                    | 200007                | 3.1000053          |          |         | 00701                              |           |  |  |  |  |
|     |                   |     |                         |                     |                  |             |                 |                            |                       |                    |          |         |                                    |           |  |  |  |  |

#### Migration Cisco UCS Test Base vs Multiple Fabrics



Source: Cisco Internal Testing

Ciscolive,

#### East-West Traffic Impact Summary

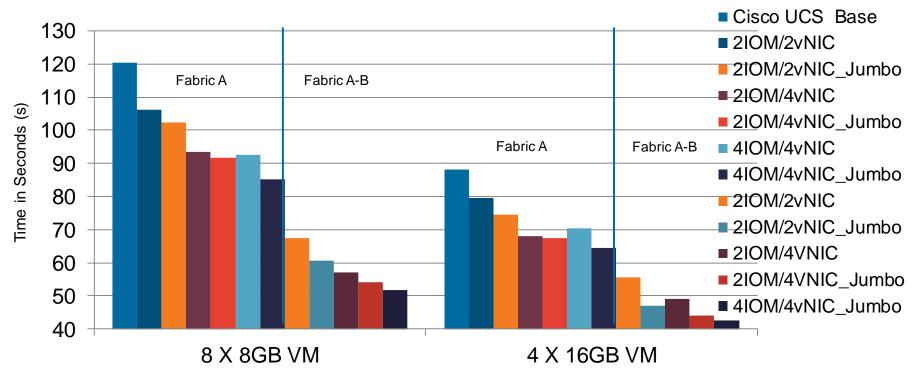
BBIN

53

in shi



#### **Testing Summary**


- Cisco UCS outperformed legacy environments on all Latency and VM migration tests
- Cisco UCS is specifically designed for compute East-West communication
- Cisco UCS offers the most flexible networking configuration options for architects
  - Traffic Pinning
  - Manage vNIC Fabric Placement not stuck with legacy hardware rules
  - Add more bandwidth easily with chassis to FI uplinks NOT adding expensive switches
- Quality and Reproduction of Testing
  - Thousands of migration samples gathered then averaged
  - Removes vCenter time variances
  - Not a benchmark, anyone can replicate test setup



#### **Observations and Recommendations**

- Biggest impact is to spread load across both UCS Fabrics
  - Example 1 vNIC on Fabric A and 1 vNIC on Fabric B
  - vCenter seems to keep traffic on each respective fabric not guaranteed
  - Traffic does not appear to cross from Fabric A to B unless there is a failure event
- Adding multiple VMkernel interfaces yields excellent results
  - Multi-NIC vMotion capability
  - Increases the number of TCP flows not subject to the 1 NIC 10Gb limit
- Adding more IOM Links do not get much performance increases without increasing the host ports as well.
- Jumbo frames have little impact on performance (2vnic/4IOM) but do make a **bigger** difference on 2vnic/2iom and 4vnic/4iom configurations.
  - Impact greater when vNIC and IOM uplinks are evenly matched

#### Migration Cisco UCS Test Summary of All Tests



Source: Cisco Internal Testing

### Q&A

53

l con

DODD

PREM

-

17



.....

#### **Complete Your Online Session Evaluation**

# Give us your feedback and receive a Cisco Live 2015 T-Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site
  <u>http://showcase.genie-connect.com/clmelbourne2015</u>
- Visit any Cisco Live Internet Station located throughout the venue

T-Shirts can be collected in the World of Solutions on Friday 20 March 12:00pm - 2:00pm



Learn online with Cisco Live! Visit us online after the conference for full access to session videos and presentations. <u>www.CiscoLiveAPAC.com</u>





## Thank you.



#