TOMORROW starts here.
Nexus 7000 / 7700 Architecture and Design Flexibility for Evolving Data Centres

BRKARC-3601

Tim Stevenson
Distinguished Engineer, Technical Marketing

#clmel
Session Abstract

This session will discuss the foundations of the Nexus 7000 and 7700 series switches, including chassis, I/O modules, and NX-OS software. Examples will show common use-cases for different module types and considerations for module interoperability. The focus will then shift to key platform capabilities and features – including VPC, FabricPath, OTV, VDCs, and others – along with real-world designs and deployment models. The session concludes with a discussion of emerging architectures and designs, including the role of Nexus 7000 and 7700 in VXLAN and Application Centric Infrastructure (ACI) environments.
Session Goals

• To provide an understanding of the Nexus 7000 / Nexus 7700 switching architecture, which provides the foundation for flexible, scalable Data Centre designs
• To examine key Nexus 7000 / Nexus 7700 design building blocks and illustrate common design alternatives leveraging those features and functionalities
• To see how the Nexus 7000 / Nexus 7700 platform plays in emerging technologies and architectures
Other Relevant Sessions

• BRKDCT-2048 - Deploying Virtual Port Channel (vPC) in NXOS (Cisco Live Melbourne 2015)
• BRKDCT-2049 – Data Centre Interconnect with Overlay Transport Virtualisation (Cisco Live Melbourne 2015)
• BRKDCT-3445 – Building scalable data centre networks with NX-OS and Nexus 7000 (2014 San Francisco – www.ciscolive.com)
• BRKDCT-2404 – VXLAN Deployment Models – A Practical Perspective (Cisco Live Melbourne 2015)
Agenda

• Introduction to Nexus 7000 / Nexus 7700
• Nexus 7000 / Nexus 7700 Architecture
 – Chassis
 – Supervisor engines and NX-OS software
 – I/O modules (M2/F2E/F3)
• I/O Module Interoperability
• Data Centre Designs with Nexus 7000 / Nexus 7700
 – STP/VPC
 – L4-7 services integration
 – VDCs
 – FabricPath
 – VRF/MPLS VPNs
 – OTV
• Next-Generation Data Centres with Nexus 7000 / Nexus 7700
 – Evolved FabricPath
 – ACI integration
 – VXLAN / VXLAN + EVPN
Introduction to Nexus 7000 / Nexus 7700
Introduction to Nexus 7000 / Nexus 7700 Platform

Data-centre class Ethernet switches designed to deliver high performance, high availability, system scale, and investment protection

Designed for wide range of Data Centre deployments, focused on feature-rich 10G/40G/100G density and performance
Nexus 7000 / Nexus 7700 – Common Foundation

Nexus 7000
General purpose DC switching w/10/40/100G

Nexus 7700
Targeted at Dense 40G/100G deployments

- Same release vehicles, versioning, feature-sets
- Common configuration model
- Common operational model

Common Foundation
- Common fabric ASICs (Fab2) and architecture
- Same central arbitration model
- Same VOQ/QOS model

Identical forwarding ASICs (F2E, F3)
- Consistent hardware feature sets
- Parallel evolution of hardware capability/scale
Agenda

• Introduction to Nexus 7000 / Nexus 7700

• Nexus 7000 / Nexus 7700 Architecture
 – Chassis
 – Supervisor engines and NX-OS software
 – I/O modules (M2/F2E/F3)

• I/O Module Interoperability

• Data Centre Designs with Nexus 7000 / Nexus 7700
 – STP/VPC
 – L4-7 services integration
 – VDCs
 – FabricPath
 – VRF/MPLS VPNs
 – OTV

• Next-Generation Data Centres with Nexus 7000 / Nexus 7700
 – Evolved FabricPath
 – ACI integration
 – VXLAN / VXLAN + EVPN
Nexus 7000 / Nexus 7700 Architecture
Nexus 7000 Chassis Family

Nexus 7010

N7K-C7010

Nexus 7018

N7K-C7018

Nexus 7009

N7K-C7009

Nexus 7004

N7K-C7004
Nexus 7700 Chassis Family

- Nexus 7718 (26RU)
- Nexus 7710 (14RU)
- Nexus 7706 (9RU)
Supervisor Engine 2 / 2E

- System supervisor engines providing control plane and management functions

<table>
<thead>
<tr>
<th>Supervisor Engine 2 (Nexus 7000)</th>
<th>Supervisor Engine 2E (Nexus 7000 / Nexus 7700)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base performance</td>
<td>High performance</td>
</tr>
<tr>
<td>One quad-core 2.1GHz CPU with 12GB DRAM</td>
<td>Two quad-core 2.1GHz CPU with 32GB DRAM</td>
</tr>
</tbody>
</table>

- Connects to fabric via 1G inband interface
Linux kernel provides preemptive multitasking, virtual memory, threading, etc.
System infrastructure: Reliable messaging (IPC), state database, process management / monitoring
Comprehensive Layer 3 protocol implementation
Data-centre focused Layer 2 feature set
Storage feature set from SAN-OS
Nexus 7000 / Nexus 7700 and NX-OS – Comprehensive Data Centre Feature Set

Layer 3
- Distributed IPv4 and IPv6 unicast hardware forwarding
- OSPF, EIGRP, IS-IS, BGP, RIP, PBR
- PIM-SM, SSM, Bidir, MSDP, MP-BGP
- IGMP/MLD
- 32-way ECMP
- HSRP, GLBP, VRRP with object tracking

Virtualisation
- VLANs/VRF-lite
- MPLS VPNs
- Virtual Device Contexts (VDCs)
- Overlay Transport Virtualisation (OTV)
- Location/ID Separation Protocol (LISP)

Layer 2
- Distributed Layer 2 hardware switching
- Hardware MAC learning
- PVRST, MST
- Virtual Port Channels (VPC)
- FabricPath
- IGMP snooping
- BPDU Guard, Root Guard, BPDU Filter, Bridge Assurance
- Link Aggregation Control Protocol (LACP/802.1AD)
- Private VLANs

High Availability
- In-Service Software Upgrade (ISSU)
- Stateful supervisor switchover
- Stateful process restarts
- Graceful restart for routing protocols
- Smart Call Home
- GOLD

Security
- RACLs, VACLs, PACLs
- Cisco TrustSec: SGACLs, LinkSec (802.1AE)
- CoPP and rate limiters
- DHCP snooping, DAI, IP source guard
- Port security and 802.1x
- Storm control
- Unicast RPF check
- Roles-based management

Operational Manageability & Programmability
- Python/TCL shell
- XMPP
- Netflow and NDE
- SPAN/ERSPAN
- SNMP/XML
- Configuration rollback
- EEM

Quality of Service
- Ingress/egress queuing
- Marking policies and mutation
- Ingress and egress policing
- Colour-aware policing
- MQC CLI model

L4-7 Services
- NAM service module (Nexus 7000)
- Remote Integrated Services (RISE)
- Intelligent Traffic Director (ITD)
- WCCP
Nexus 7000 / 7700 I/O Module Families

M Series Modules

NEXUS 7000
M1 1G and 10G
L2/L3/L4 with large forwarding tables and rich feature set

NEXUS 7000
F1 10G
High performance, low latency with streamlined feature set

F3 closes the F/M feature gap!
Nexus 7000 M2 I/O Modules

N7K-M224XP-23L / N7K-M206FQ-23L / N7K-M202CF-22L

• 10G / 40G / 100G M2 I/O modules
• Share common hardware architecture
• Two integrated forwarding engines (120Mpps)
• Feature-rich L2/L3/L4 with large tables

<table>
<thead>
<tr>
<th>Module</th>
<th>Port Density</th>
<th>Optics</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2 10G</td>
<td>24 x 10G (plus Nexus 2000 FEX support)</td>
<td>SFP+</td>
<td>240G</td>
</tr>
<tr>
<td>M2 40G</td>
<td>6 x 40G (or up to 24 x 10G via breakout)</td>
<td>QSFP+</td>
<td>240G</td>
</tr>
<tr>
<td>M2 100G</td>
<td>2 x 100G</td>
<td>CFP</td>
<td>200G</td>
</tr>
</tbody>
</table>
Nexus 7000 / Nexus 7700 F2E I/O Modules

N7K-F248XP-25E / N7K-F248XT-25E / N77-F248XP-23E

- 48-port 1G/10G with SFP/SFP+ transceivers
- 480G full-duplex fabric connectivity
- System-on-chip (SOC) forwarding engine design
 - 12 independent SOC ASICs
- Layer 2/Layer 3 forwarding with L3/L4 services
 (ACL/QOS)
- Interoperability with M1/M2, in Layer 2 mode on Nexus 7000
 - Proxy routing for inter-VLAN/L3 traffic
Nexus 7000 F3 I/O Modules

N7K-F348XP-25 / N7K-F312FQ-25 / N7K-F306CK-25

- 10G / 40G / 100G F3 I/O modules
- Share common hardware architecture
- SOC-based forwarding engine design
 6 independent SOC ASICs per module
- Layer 2/Layer 3 forwarding with L3/L4 services (ACL/QOS) and advanced features
- **Require Supervisor Engine 2 / 2E**

<table>
<thead>
<tr>
<th>Module</th>
<th>Port Density</th>
<th>Optics</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3 10G</td>
<td>48 x 1/10G (plus Nexus 2000 FEX support)</td>
<td>SFP+</td>
<td>480G</td>
</tr>
<tr>
<td>F3 40G</td>
<td>12 x 40G (or up to 48 x 10G via breakout)</td>
<td>QSFP+</td>
<td>480G</td>
</tr>
<tr>
<td>F3 100G</td>
<td>6 x 100G</td>
<td>CPAK</td>
<td>550G</td>
</tr>
</tbody>
</table>

* Roadmap item
Nexus 7700 F3 I/O Modules

N7K-F348XP-25 / N7K-F312FQ-25 / N7K-F306CK-25

- 10G / 40G / 100G F3 I/O modules
- Share common hardware architecture
- SOC-based forwarding engine design
 - 6 independent SOC ASICs per 10G module
 - 12 independent SOC ASICs per 40G/100G module
- Layer 2/Layer 3 forwarding with L3/L4 services (ACL/QOS) and advanced features

<table>
<thead>
<tr>
<th>Module</th>
<th>Port Density</th>
<th>Optics</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3 10G</td>
<td>48 x 1/10G (plus Nexus 2000 FEX support)</td>
<td>SFP+</td>
<td>480G</td>
</tr>
<tr>
<td>F3 40G</td>
<td>24 x 40G (or up to 76 x 10G + 5 x 40G via breakout)</td>
<td>QSFP+</td>
<td>960G</td>
</tr>
<tr>
<td>F3 100G</td>
<td>12 x 100G</td>
<td>CPAK</td>
<td>1.2T</td>
</tr>
</tbody>
</table>

* Roadmap item
Agenda

• Introduction to Nexus 7000 / Nexus 7700
• Nexus 7000 / Nexus 7700 Architecture
 – Chassis
 – Supervisor engines and NX-OS software
 – I/O modules (M2/F2E/F3)
• I/O Module Interoperability
• Data Centre Designs with Nexus 7000 / Nexus 7700
 – STP/VPC
 – L4-7 services integration
 – VDCs
 – FabricPath
 – VRF/MPLS VPNs
 – OTV
• Next-Generation Data Centres with Nexus 7000 / Nexus 7700
 – Evolved FabricPath
 – ACI integration
 – VXLAN / VXLAN + EVPN
I/O Module Interoperability
I/O Module Interoperability

• General module interoperability rule is: “+/-1 generation” in same Virtual Device Context (VDC)
• System-level coexistence based on chassis support matrix
 E.g., cannot run F1 modules in Nexus 7004
• Layer 3 forwarding behaviour in VDC is key difference between interop models:
 “Proxy Forwarding”
 “Ingress Forwarding” with Lowest Common Denominator
Proxy Forwarding Model

M2 + F2E VDC

- F2E modules run in pure Layer 2 mode – all L3 functions disabled
- From F2E perspective, Router MAC reachable through port-channel with all ports on M2 modules
- All packets destined to Router MAC forwarded through fabric toward one “member port” in that channel
- M2 modules(s) perform all L3 forwarding and policy, pass packets back over fabric to output port
- Key consideration: M-series L3 routing capacity versus F-series front-panel port count

```
interface vlan 10
ip address 10.1.10.1/24
!
interface vlan 20
ip address 10.1.20.1/24
```

Up to 128 “links”
Ingress Forwarding with Lowest Common Denominator Model

M2 + F3 VDC -or- F2E + F3 VDC

- F3 module interoperability always “Ingress Forwarding” – NO proxy forwarding
 Ingress module makes all forwarding decisions
- Supported feature set and scale based on Lowest Common Denominator
 Feature available if all modules support the feature

<table>
<thead>
<tr>
<th>Module Types in VDC</th>
<th>Layer 2</th>
<th>Layer 3</th>
<th>VPC</th>
<th>Fabric Path</th>
<th>VXLAN</th>
<th>FEX</th>
<th>MPLS</th>
<th>OTV</th>
<th>LISP</th>
<th>FCOE</th>
<th>Table Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3</td>
<td>✓</td>
<td>F3 size</td>
</tr>
<tr>
<td>M2 + F3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>F3 size</td>
</tr>
<tr>
<td>F2E + F3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>F2E size</td>
</tr>
<tr>
<td>M2 + F2E + F3</td>
<td></td>
<td>Not supported</td>
</tr>
</tbody>
</table>

Not all features supported by software today...
Module Interoperability Use Cases

• **M2 + F2E VDC**
 Provide higher-density 10G while supporting M2 features and L3 functions
 Full internet routes, MPLS VPNs
 FabricPath with increased MAC address scale (proxy L2 learning)

• **F2E + F3 VDC**
 Introduction of 40G/100G into existing 10G environments
 Migration to larger table sizes
 Transition to additional features/functionality (OTV, MPLS, VXLAN, etc.)

• **M2 + F3 VDC**
 Introduce higher 10G/40G/100G port-density while maintaining feature-set
 Avoid proxy-forwarding model for module interoperability
 Migrate to 40G/100G interfaces with full-rate flow capability
Agenda

• Introduction to Nexus 7000 / Nexus 7700
• Nexus 7000 / Nexus 7700 Architecture
 – Chassis
 – Supervisor engines and NX-OS software
 – I/O modules (M2/F2E/F3)
• I/O Module Interoperability
• Data Centre Designs with Nexus 7000 / Nexus 7700
 – STP/VPC
 – L4-7 services integration
 – VDCs
 – FabricPath
 – VRF/MPLS VPNs
 – OTV
• Next-Generation Data Centres with Nexus 7000 / Nexus 7700
 – Evolved FabricPath
 – ACI integration
 – VXLAN / VXLAN + EVPN
Data Centre Designs with Nexus 7000 / Nexus 7700
Nexus 7000 / Nexus 7700 Design Building Blocks

Foundational:
- Spanning Tree (RSTP+/MST)
- Virtual Port Channel (VPC)
- FabricPath
- Virtual Routing and Forwarding (VRF) and MPLS VPNs

Innovative:
- Remote Integrated Service Engine (RISE)
- Intelligent Traffic Director (ITD)
- Virtual Device Context (VDC)
- Overlay Transport Virtualisation (OTV)

Emerging:
- FabricPath evolution
- ACI integration
- VXLAN flood and learn / VXLAN + EVPN
STP → Virtual Port Channel (VPC)

• Most customers have taken this step
• Leverages all available uplink bandwidth by eliminating STP blocked ports
• Eliminates active-standby mode on dual-homed servers
• Provides active-active HSRP
• Works seamlessly with current network designs/topologies
• Simple L4-7 services integration
• Works with any module type (M2/F2E/F3)
• Follow documented best practices for VPC to avoid issues
Collapsed Core/Aggregation

- Nexus 7000 / Nexus 7700 as Data Centre collapsed core/aggregation
- Consolidate multiple aggregation building blocks into single switch pair
- Reduce number of managed devices
- Simplify East-West communication path
- M-series or F-series I/O modules, depending on:
 - Port density and feature-set requirements
 - Desired level of oversubscription
Traditional 3-Tier Hierarchical Design

- Extremely wide customer-deployment footprint
- Nexus 7000 / Nexus 7700 in both Data Centre aggregation and core
 - Provides high-density, high-performance 10G / 40G / 100G
 - Same module-type considerations as collapsed core
- Scales well, but scoping of failure domains imposes some restrictions
 - VLAN extension / workload mobility options limited
L4-7 Services Integration – VPC Connected

- VPC designs well-suited for L4-7 services integration – pair of aggregation devices makes service appliance connections simple
- Multiple service types possible – transparent services, appliance as gateway, active-standby or active-active models
- VPC-connected appliances preferred:
 Ensures that all traffic – data plane, fault-tolerance, and management – sent direct via VPC port-channels
 Minimises VPC peer link utilisation in steady state
L4-7 Services Integration – Orphan Ports

- Sometimes services appliance does not support port-channels
- Use orphan ports with “vpc orphan-port suspend” on appliance-connected interfaces
 Ensures if VPC peer-link fails, services on VPC secondary taken down as well
- Orphan-port connected appliances means data plane, fault-tolerance, and management traffic may traverse VPC peer-link
 Be sure to provision peer-link accordingly
L4-7 Services Integration – RISE

Remote Integrated Service Engine (RISE)

- Logical integration of external services appliance with Nexus 7000 / Nexus 7700 Citrix NetScaler and Cisco Prime NAM appliance supported today
- Enables feature integration and data-path acceleration between services appliance and Nexus 7000 / Nexus 7700 switches, including:
 - Discovery and bootstrap
 - Automated Policy Based Routing (APBR)
 - Route Health Injection (RHI) (future)
RISE Attach Modes

• Direct Mode – Services appliance directly connected to Nexus 7000 / Nexus 7700

• Indirect Mode – Virtual service appliance (e.g., NetScaler VPX / 1000V) connected via L2 network
RISE Direct Attached Mode

- Services appliance directly connected to Nexus 7000 / Nexus 7700
- NetScaler appliance can connect to single switch or VPC peer switches
- Encrypted channel for switch ↔ appliance communications
- Supports Auto-Discovery and Bootstrap of NetScaler services appliance

Appliance’s management IP configured via RISE during auto-discovery process
RISE Indirect Mode

• Services appliance indirectly connected to Nexus 7000 / Nexus 7700 via an L2 network
 Typical design for virtual services
• Encrypted channel for switch ↔ appliance communications
• Auto-Discovery and Bootstrap not supported in indirect mode
 User must manually connect to NetScaler to perform initial configuration
RISE – Virtual Services Modules

- **show module service** displays all RISE-attached services appliances, including type, status, version, and serial number.

- Can attach to RISE services appliance directly from switch command line.
RISE Auto-PBR

- User configures new service in NetScaler
- NetScaler sends server list and next-hop interface to Nexus 7000/7700 switch over RISE control channel
- Switch automatically generates PBR route-maps and applies PBR rules in data-plane hardware to redirect target traffic – no manual configuration on switch
- Client traffic destined to VIP redirected to NetScaler for processing, destination rewritten to Real server IP
RISE Auto-PBR

• User configures new service in NetScaler
• NetScaler sends server list and next-hop interface to Nexus 7000/7700 switch over RISE control channel
• Switch automatically generates PBR route-maps and applies PBR rules in data-plane hardware to redirect target traffic – no manual configuration on switch
• Client traffic destined to VIP redirected to NetScaler for processing, destination rewritten to Real server IP
• Return traffic redirected to rewrite Real IP to VIP
ITD on Nexus 7000 / Nexus 7700

Intelligent Traffic Director (ITD)

- Hardware-based L3/L4 redirection and weighted load-balancing
- Any Nexus 7000 / Nexus 7700 port can be used for load-balancing
 - No service module or external load-balancer required
 - Available on M2/F2E/F3
- Redirect line-rate traffic to any devices, including firewalls, web caches, WAAS, etc.
 - Servers/appliances do not have to be directly connected
- Supports both IPv4 and IPv6
- Bidirectional flow coherency – Same device receives forward and reverse traffic
- Performs health monitoring/probes and automatic failure handling

Note: ITD is **not** a replacement for L7 load-balancers (URL-based, cookie-based, SSL, etc.)
ITD for Server Load Balancing

- Use ITD to load-balance inbound traffic toward cluster of servers
- Typical configuration uses source-based load-balancing to direct flows to target servers
- Option to load-balance based on IP + L4 or just IP addresses
 - L4 option can match on subset of TCP/UDP ports
- Specify VIP, weighting, bucket count (granularity of load-balancing), hot-standby nodes, health probes, etc.
ITD + VDCs for Firewall Load Balancing and Security Domains

- Use VDCs to consolidate hardware while maintaining security-domain separation
- Use ITD to load-balance inbound/outbound traffic through multiple firewall appliances
- Pin bidirectional flows to same firewall device by using source-based load-balancing inbound and destination-based load-balancing outbound
- Option to load-balance based on IP + L4 or just IP addresses

 L4 option can match on subset of TCP/UDP ports
What Are VDCs?

Virtual Device Contexts
- Create multiple virtual devices out of one physical device
- Provide data-plane, control-plane, and management-plane separation
- Fault isolation and reduced fate sharing
- Flexible separation / allocation of hardware resources and software components

<table>
<thead>
<tr>
<th>VDC 1</th>
<th>VDC 2</th>
<th>VDC n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 Protocols</td>
<td>Layer 3 Protocols</td>
<td>Layer 2 Protocols</td>
</tr>
<tr>
<td>VLAN</td>
<td>OSPF</td>
<td>VLAN</td>
</tr>
<tr>
<td>802.1P</td>
<td>VRTRP</td>
<td>VPC</td>
</tr>
<tr>
<td>LACP</td>
<td>BGP</td>
<td>CDP</td>
</tr>
<tr>
<td>CT S</td>
<td>SNMP</td>
<td>LACP</td>
</tr>
<tr>
<td>Layer 3 Protocols</td>
<td>Layer 3 Protocols</td>
<td>Layer 3 Protocols</td>
</tr>
<tr>
<td>VLAN</td>
<td>OSPF</td>
<td>VLAN</td>
</tr>
<tr>
<td>802.1P</td>
<td>VRTRP</td>
<td>VPC</td>
</tr>
<tr>
<td>LACP</td>
<td>BGP</td>
<td>CDP</td>
</tr>
<tr>
<td>CT S</td>
<td>SNMP</td>
<td>LACP</td>
</tr>
</tbody>
</table>

Note: VDCs do not provide a hypervisor capability, or ability to run different OS versions in each VDC.

Network Stack (L2 / IPv4 / IPv6)
VDC Interface Allocation

• Physical interfaces assigned on per VDC basis, from default/admin VDC
• A single interface cannot be shared across multiple VDCs
• All subsequent interface configuration performed within the assigned VDC
• VDC type (“limit-resource module-type”) determines types of interfaces allowed in VDC
• VDC type driven by operational goals and/or hardware restrictions, e.g.:
 Mix M2 and F2E in same VDC to increase MAC scale in FabricPath
 Restrict VDC to F3 only to avoid lowest common denominator
 Cannot mix M1 and F3 in same VDC
VDC Interface Allocation – M2

- Allocate any interface to any VDC
- But, be aware of shared hardware resources – backend ASICs may be shared by several VDCs
- Best practice: allocate entire module to one VDC to minimise shared hardware resources
VDC Interface Allocation – F2E / F3 Modules

- Allocation on port-group boundaries – aligns ASIC resources to VDCs
- Port-group size varies depending on module type

F2E
4-port port-group

F3-10G
8-port port-group

F3-40G
2-port port-group

F3-100G
1-port port-group

VDC 1
VDC 2
VDC 3
VDC 4
Communicating Between VDCs

• **Must** use front-panel ports to communicate between VDCs
 No backplane inter-VDC communication

• No restrictions on L2/L3 configuration, module types, or physical media type – just like interconnecting two physical switches
 Copper Twinax cables (CX-1) or 40G bidi optics provide low-cost interconnect options
Collapsed Core Design with VDCs

• Maintain administrative segmentation while consolidating network infrastructure
• Maintain fault isolation between zones (independent L2, routing processes per zone)
• Firewalling between zones facilitated by VDC port membership model
Scalable Layer 2 Fabrics – Cisco FabricPath

Migration to Data Centre Fabric Designs

FabricPath combines the benefits of Layer 3 routing with the simplicity of Layer 2 switching.

- Easy Configuration
- Plug-and-Play
- Flexible Provisioning

- Stable and Scalable
- Multipathing (ECMP)
- Fast Convergence
Why FabricPath?

- Reduction/elimination of Spanning-Tree Protocol (STP)
- Better stability and convergence characteristics
- Simplified configuration
- Leverage parallel paths at Layer 2 (ECMP)
- Deterministic throughput and latency using typical designs
- “VLAN anywhere” – flexibility, L2 adjacency, and VM mobility
- Supports legacy/non-IP applications and protocols
- Wide customer-deployment footprint
FabricPath and VPC+

Two-Spine L2 Fabric Design

- Simplest FabricPath design option – Extension of traditional aggregation/access designs
- Provides immediate benefits:
 - Removal of STP
 - Active/active gateways
 - “VLAN anywhere” at access layer
 - Topological flexibility
- Positions network for emerging technologies and topologies
FabricPath with Anycast HSRP

Four-Spine L2 Fabric Design

- Extends existing L2 fabric design – expands spine layer
- Moves topology toward modern DC-fabric trends
- Increases bisectional bandwidth within fabric
- Decreases failure impact
- Increases deployment flexibility

All Anycast HSRP forwarders share same VIP and VMAC

L3 Anycast HSRP between spine switches

Routed traffic spread over spines based on ECMP

SVI

FP

CE
FabricPath Layer 3 Functions

Where does the L2/L3 boundary sit in a FabricPath network?
FabricPath Layer 3 Functions

Alternative View – “Border Leaf”

Leaf switches each have a “personality” – most for server access…

...but two (or more) leaf switches provide Layer 3 services (inter-VLAN routing) and external connectivity.
FabricPath with Border Leaf

Pure Spine/Leaf Fabric

• Paradigm shift with respect to typical designs – Traditional “aggregation” layer becomes pure FabricPath spine
• Provides uniform any-to-any connectivity between leaf switches
• Two or more leaf switches provide L2/L3 boundary, inter-VLAN routing and North ↔ South routing
• Separates interconnection function from routing function
FabricPath L4-7 Services

“L4-7 Services Leaf”

Two (or more) Layer 4-7 services leaf switches
FabricPath with Services Leaf

- Services leaf pair simplifies L4-7 services attachment to fabric
- Can leverage same designs and technologies as for traditional networks – VPC+, RISE, ITD, etc.
- Deploy as many services leaf pairs as necessary/desired
- Could be co-located with L3 services leaf switches
FabricPath Multi-Topology

- Traffic engineering for FabricPath VLANs
- Extend some VLANs DC-wide, limit others to subset of physical topology
- One VLAN belongs to one and only one FabricPath topology
- FabricPath core ports always belong to default topology, may belong to as many other topologies as desired
- SPF run for each topology – routing occurs per topology

Configure FabricPath core ports
Create additional FP topologies
Map VLANs to topologies
Map topologies to interface(s)

<table>
<thead>
<tr>
<th>Topology</th>
<th>VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (default)</td>
<td>1-100, 301-4095</td>
</tr>
<tr>
<td>10</td>
<td>101-200</td>
</tr>
<tr>
<td>20</td>
<td>201-300</td>
</tr>
</tbody>
</table>
FabricPath Multi-Topology Design

Multi-Pod L2 Fabric

- Core ports in Pod belong to default topology and also mapped to Pod-local topology.
- Pod-local VLANs exist only in Pod switches, mapped to Pod-specific topology.
- Only DC-wide VLANs exist in FabricPath core.
- Core ports belong only to default topology.

Layer 2 FP Default Topology
- POD 1 Topology + Default Topology
- POD 2 Topology + Default Topology
- POD 3 Topology + Default Topology
VRF / MPLS VPNs

- Provides network virtualisation – One physical network supporting multiple virtual networks
 While maintaining security/segmentation and access to shared services
- VRF-lite segmentation for simple/limited virtualisation environments
- MPLS L3VPN for larger-scale, more flexible deployments
MPLS Layer 3 VPN – Secure Multi-Tenant Data Centre

Requirement:
• Secure segmentation for hosted / enterprise data centre

Solution:
• MPLS network infrastructure for all services
• MPLS PE boundary in Pod aggregation layer
• Direct PE-PE or PE-P-PE networks
• L2 or L3 below MPLS boundary (VRF-lite with PE-CE)
MPLS + FabricPath for Multi-tenancy and VLAN Anywhere

- Mixed M2+F2E system provides FabricPath “south” and MPLS L3VPNs “north”
- F2E modules provide FabricPath for STP-free Layer 2 with flexible VLAN provisioning
- VPC+ provides active-active HSRP into L2 network
- M2 modules provide VRF membership on SVIs and MPLS L3VPNs for multi-tenancy on shared infrastructure
- MPLS functions at L2/L3 spine or on border leaf
Multi-Tenant Data Centre with MPLS + OTV + VDC

- MPLS for L3VPNs/segmentation
- OTV for multi-site DCI
- VDCs to consolidate multiple network functions (L2/L3 gateways, MPLS PE, and OTV edges) on same physical infrastructure
What Is OTV?

Overlay Transport Virtualisation (OTV)

- Provides multi-site Layer 2 Data Centre Interconnect (DCI)
- Dynamic “MAC in IP” encapsulation with forwarding based on MAC “routing” table
- No pseudo-wire or tunnel state maintained
OTV at a Glance

- MAC addresses advertised in routing protocol (control plane learning) between Data Centre sites
- Ethernet traffic between sites encapsulated in IP: “MAC in IP”
OTV VDC Requirement

• Current limitation – SVI (for VLAN termination at L3) and OTV overlay interface (for VLAN extension over OTV) cannot exist in same VDC
• Typical designs move OTV to separate VDC, or separate switch (e.g. Nexus 7004)
Agenda

• Introduction to Nexus 7000 / Nexus 7700
• Nexus 7000 / Nexus 7700 Architecture
 – Chassis
 – Supervisor engines and NX-OS software
 – I/O modules (M2/F2E/F3)
• I/O Module Interoperability
• Data Centre Designs with Nexus 7000 / Nexus 7700
 – STP/VPC
 – L4-7 services integration
 – VDCs
 – FabricPath
 – VRF/MPLS VPNs
 – OTV
• Next-Generation Data Centres with Nexus 7000 / Nexus 7700
 – Evolved FabricPath
 – ACI integration
 – VXLAN / VXLAN + EVPN
Next-Generation Data Centres with Nexus 7000 / Nexus 7700
Next-Generation Data Centre Building Blocks

• Evolved FabricPath-based networks
 Introduce BGP-based host- and subnet-route learning
 Distribute L3 gateway function to leaf layer
 Central point of fabric management

• Application-Centric Infrastructure (ACI)
 Policy-based fabric management
 Holistic application deployment and management model – application / compute / network / services

• VXLAN and VXLAN + EVPN
 “Standards-based” DC fabrics with flexible overlay
 Multi-tenancy, workload mobility, integration of physical and virtual
Evolved FabricPath-Based Networks

Fabric and Host / Route Reachability

- FabricPath IS-IS for fabric-node reachability and multidestination tree construction
- FabricPath encapsulation at the data plane

- MP-BGP for host- and subnet-route distribution (VPNv4/v6 address family)
- Route reflectors (RR) for scalability
 - Reduces number of iBGP peering sessions
Evolved FabricPath-Based Networks

Distributed Gateway

- All leaf switches share gateway IP and MAC in each subnet
 - Any subnet anywhere – Any leaf can instantiate any subnet
 - No HSRP
- ARP/ND terminated on leaf switch, no flooding of IP traffic
Evolved FabricPath-Based Networks

Central Point of Fabric Management

DCNM 7.0 provides central point of fabric management

- Power-on Auto-Provisioning (PoAP)
- Cable-plan consistency checks
- Fabric health-monitoring
- Performance monitoring
- Topology map
- Image and configuration repository
What Is ACI?

• Application Centric Infrastructure (ACI) – A policy-based fabric
• Holistic application deployment and management model – application / compute / network / services
• Native support only on Nexus 9500/9300 today

Adding ACI to existing Data Centre network:
• Extend existing workloads / applications into ACI
• Integration via L2
• Integration as “Services Fabric”
• Integration via L3 + overlay
Adding ACI to the Data Centre – Layer 2 Option

• ACI fabric as “leaf switch” in existing Data Centre network
• Extend L2 VLANs into ACI fabric
 Map 802.1Q VLANs to ACI end-point groups (EPGs)
• Applications and workloads extend between existing network and ACI fabric

- L3 gateway for extended VLANs remains on existing infrastructure
- Extend desired VLANs onto trunk
- L2 links (802.1Q) over two-sided VPC port-channel
- Map VLANs to EPGs and put VLANs in flood mode in ACI
- Connection at ACI leaf layer
Adding ACI to the Data Centre – ACI as Services Fabric

• Hosts in ACI fabric provide Layer 4-7 services – physical and/or virtual
• Easily scale up/down services based on changing requirements
• Security and other L4-7 services policy managed via APIC controller
Extending an ACI Overlay into the Data Centre

- ACI policy overlay can be extended into existing Data Centre network
- Intercommunication between existing Data Centre fabric and ACI Pod via Layer 3
- Use ACI for highly-integrated network applications
Extending an ACI Overlay into the Data Centre

- ACI policy overlay can be extended into existing Data Centre network
- Intercommunication between existing Data Centre fabric and ACI Pod via Layer 3
- Use ACI for highly-integrated network applications

L3 underlay network extended between fabrics

AVS on hypervisor as ACI endpoint
Extending an ACI Overlay into the Data Centre

- ACI policy overlay can be extended into existing Data Centre network
- Intercommunication between existing Data Centre fabric and ACI Pod via Layer 3
- Use ACI for highly-integrated network applications
Emergence of VXLAN

- “Standards-based” overlay technology (RFC 7348) – New encapsulation for data-centre fabric
- Provides segmentation, IP mobility, and scale to Data Centre networks
- Leverages IP-based underlay with L3 ECMP
VXLAN Basics

• Underlay – Layer 3 IP network
VXLAN Basics

- Underlay – Layer 3 IP network
- Overlay – VXLAN encapsulation
VXLAN Basics

• Underlay – Layer 3 IP network
• Overlay – VXLAN encapsulation
• VNI – VLXAN Network Identifier
VXLAN on Nexus 7000 / Nexus 7700

- Near-term roadmap item for Nexus 7000 / Nexus 7700 F3 I/O modules
- Comprehensive VXLAN VTEP functionality in F3:
 VXLAN bridging
 VXLAN-to-VLAN bridging
 VXLAN-to-VXLAN routing
 VXLAN-to-VLAN routing
VXLAN with Flood and Learn

- Host learning on VTEPs based on flood and learn behaviour
- VTEPs join underlay IP multicast groups based on VNI ‘membership’
 - If VNI exists behind VTEP, join corresponding IP multicast group in underlay
- ARP (and other broadcast / unknown unicast / multicast traffic) in a given VNI flooded to all interested VTEPs
Gateway Functions in VXLAN Flood and Learn

- Gateway functions centralised in VXLAN flood and learn
- Nexus 7000 / 7700 VPC pair with L2 + L3 VXLAN gateway capabilities
- VPC provides MAC state synchronisation and active-active HSRP forwarding
- Redundant VTEPs share Anycast VTEP IP address in underlay
- VXLAN bridging occurs directly between VTEPs
VXLAN + EVPN

- Host learning on VTEPs based on control-plane learning via MP-BGP using the EVPN address family
- VTEPs advertise new host MAC/IPs in BGP
- Route reflectors reduce number of peering sessions
- VTEPs still join underlay IP multicast groups to handle broadcast / multicast / unknown unicast traffic forwarding

 Or, perform head-end replication…
Gateway Functions in VXLAN + EVPN

- Gateway functions distributed in VXLAN + EVPN
 Centralised gateways also possible
- VXLAN bridging and routing occurs directly between VTEPs
 Host reachability known via MP-BGP
- All leaf switches share gateway IP and MAC for each subnet
 No HSRP
 No change to gateway when hosts move within fabric
Flexible Data Centre Options with Nexus 7000 / Nexus 7700

- Traditional STP/VPC
- FabricPath
- FabricPath with Border Leaf and Distributed Gateway
- VXLAN + EVPN
- VDCs for hardware consolidation and domain isolation
- RISE / ITD for services integration
- Site 1, Site 2, Site 3
 - OTV
 - OTV for DCI
 - Any Transport!
- ACI Integration

© 2015 Cisco and/or its affiliates. All rights reserved.
Key Takeaways

• Nexus 7000 / Nexus 7700 switching architecture provides **foundation** for flexible and scalable Data Centre network designs
• Nexus 7000 / Nexus 7700 design **building blocks** interwork and complement each other to solve customer challenges
• Nexus 7000 / Nexus 7700 platform continues to **evolve** to support next-generation/emerging technologies and architectures
Q & A
Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2015 T-Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

• Directly from your mobile device on the Cisco Live Mobile App
• By visiting the Cisco Live Mobile Site http://showcase.genie-connect.com/clmelbourne2015
• Visit any Cisco Live Internet Station located throughout the venue

T-Shirts can be collected in the World of Solutions on Friday 20 March 12:00pm - 2:00pm

Learn online with Cisco Live!
Visit us online after the conference for full access to session videos and presentations. www.CiscoLiveAPAC.com
Thank you.