

What You Make Possible

IPTV, Internet Video and Adaptive Streaming Technologies BRKSPV-1999

Presenter Today – Ali C. Begen

- Have a Ph.D. degree from Georgia Tech
- With Cisco since 2007

Video and Content Platforms

Research & Advanced Development Group

Works in the area of

Architectures for next-generation video transport and distribution over IP networks

Interested in

Networked entertainment

Internet multimedia

Transport protocols

Content distribution

- Senior member of the IEEE and ACM
- Visit http://ali.begen.net for publications

Agenda

Part I: IPTV

IPTV – Architecture, Protocols and SLAs Video Transport in the Core Networks Video Distribution in the Access Networks Improving Viewer Quality of Experience Part II: Internet Video and Adaptive Streaming Example Over-the-Top (OTT) Services Media Delivery over the Internet Adaptive Streaming over HTTP **Emerging Standards**

First Things First IPTV vs. IP Video

Managed delivery

Emphasis on quality

Linear TV plus VoD

Paid service

IP Video

Best-effort delivery

Quality not guaranteed

Mostly on demand

Paid or free service

BRKSPV-1999

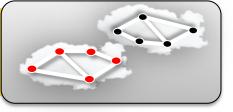
© 2013 Cisco and/or its affiliates. All rights reserved.

Experiences Consumers Want Now Yet Service Providers Struggle to Deliver

Support an increasing variety of services on an any device and deliver a common experience everywhere

BRKSPV-1999

© 2013 Cisco and/or its affiliates. All rights reserved.


Three Dimensions of the Problem Content, Transport and Devices

Managed and Unmanaged Content

Managed and Unmanaged Transport

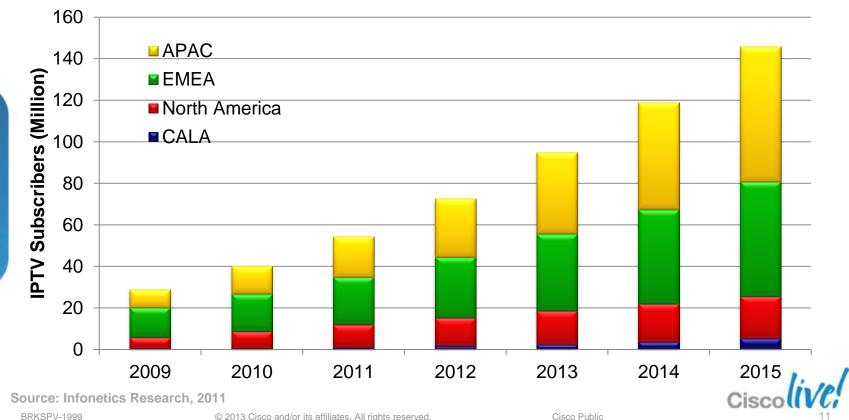
Managed and Unmanaged Devices

Cisco Public

Cisco

Part I: IPTV

What Is IPTV? The Fundamental Component for Connected Homes


IPTV = IP Network-delivered Television

- Switched digital video (SDV)
- Video recording (DVR/PVR/nDVR)
- Video-on-demand (VoD)
- Interactive TV applications
- Targeted (advanced) advertising

^{© 2013} Cisco and/or its affiliates. All rights reserved.

Growth for IPTV

BRKSPV-1999

© 2013 Cisco and/or its affiliates. All rights reserved.

Trends Driving IPTV Adoption

Subscribers want more choice and control

New generation grew up computer/Internet savvy

Customised for me – One bill, one provider, integrated services

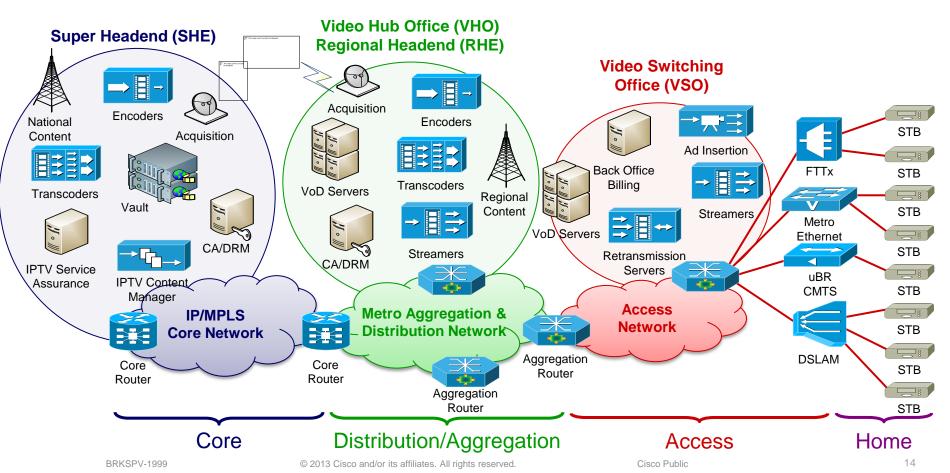
Codec, access, server and CPE technologies are improving

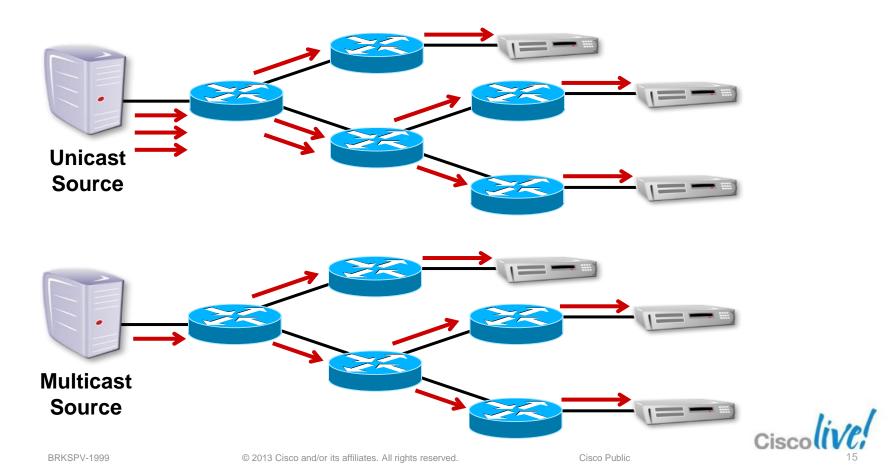
MPEG-4 AVC (H.264) improvements, new xDSL, FTTx, DOCSIS 3.0 access technologies Moore's law advancements in processing and memory

Competition is increasing among service providers

No longer limited by access

Traditional markets are going away, e.g., VoIP is almost free


Video is driving next generation service provider network designs


IPTV – Architecture, Protocols and SLAs

End-to-End IPTV Network Architecture

Unicast vs. Multicast

Broadcast IPTV = IP Multicast

Various Transports

Native IP multicast, MPLS, L2, optical

SSM: Source-Specific Multicast (RFC 4604 and 4607)

Receivers subscribe (S,G) channels to receive traffic only from source S sent to group G Primarily introduced (by IETF) for IPTV-like services

IP Multicast Endpoints

Sources: Encoder, transcoder, groomer, ad-splicer Receivers: Transcoder, groomer, ad-splicer, eQAM, IP STB

IETF standardised

Receiver-to-Router Protocols: IGMPv3 (IPv4) and MLDv2 (IPv6) with (S,G) signalling Router-to-Router Protocols: PIM-SSM, IGMPv3 Proxy Routing, Snooping on HAG and L2 devices

Transport Challenges

Packet loss, out-of-order delivery, packet duplication (We cannot use TCP for IP multicast)

Real-Time Transport Protocol (RTP) http://tools.ietf.org/html/rfc3550

Basics

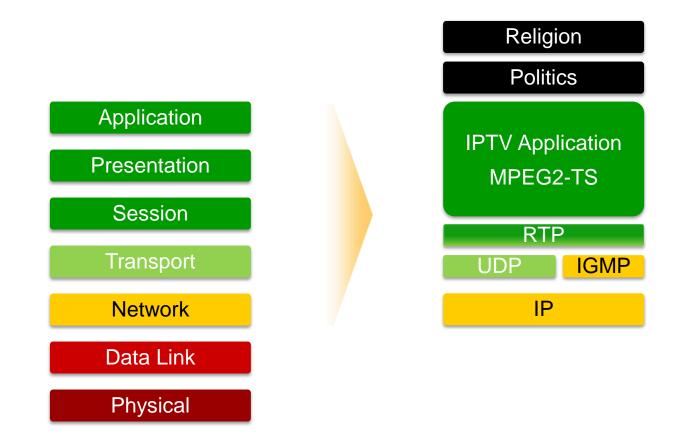
First specified by IETF in 1996, later updated in 2003 (RFC 3550) Runs over any transport-layer protocol (Typically over UDP) Runs over both unicast and multicast No built-in reliability

Main Services

Payload type identification Sequence numbering Timestamping

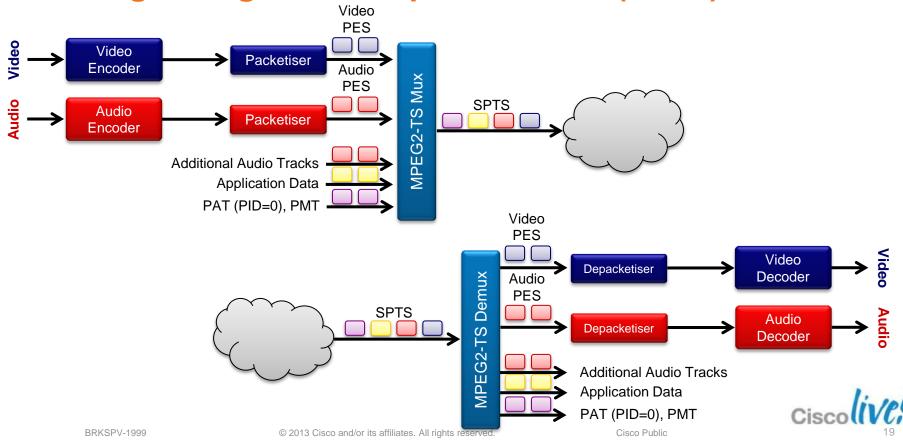
Extensions

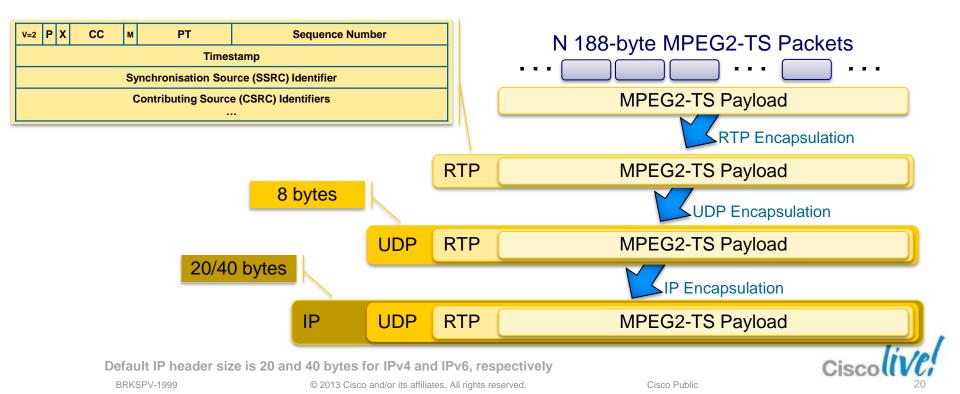
Basic RTP functionality uses a 12-byte header RFC 5285 defines an RTP header extension mechanism


Control Plane – RTCP

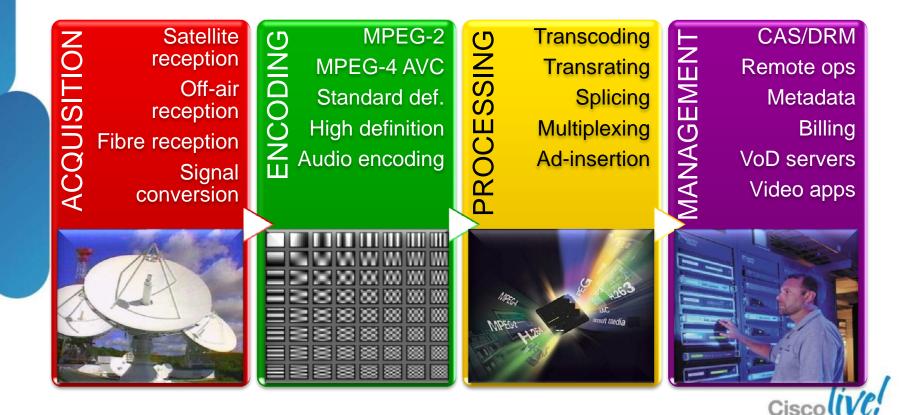
Provides minimal control and identification functionality

Enables a scalable monitoring functionality (Sender, receiver, extended reports)


RTP Transport of MPEG2 Transport Streams


© 2013 Cisco and/or its affiliates. All rights reserved.

Cisc


Packetisation into MPEG2 Transport Streams Single Program Transport Streams (SPTS)

RTP Transport of MPEG2 Transport Streams http://tools.ietf.org/html/rfc2250

Video Headend Building Blocks

BRKSPV-1999

Role of IPTV Middleware

- Middleware provides interoperability for system components
- Middleware enables

Revenue producing IPTV services

Differentiation for service providers

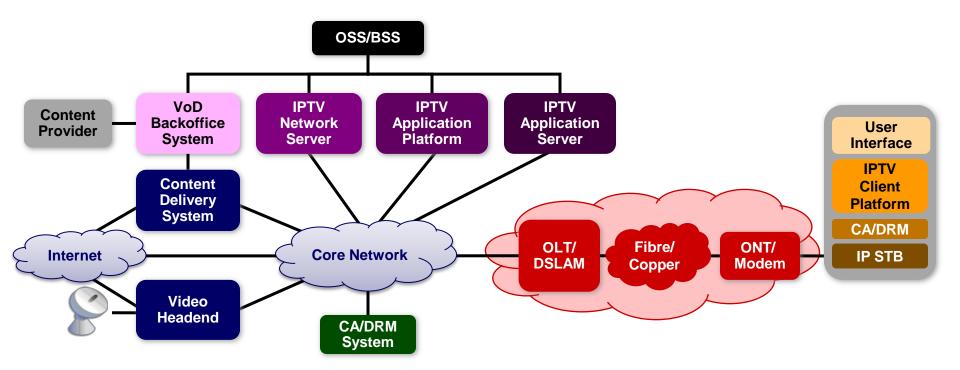
Consistent and extensible consumer experience

Delivery of rich media to consumers

Compelling GUIs

Middleware ties together all parts of an end-to-end IPTV system

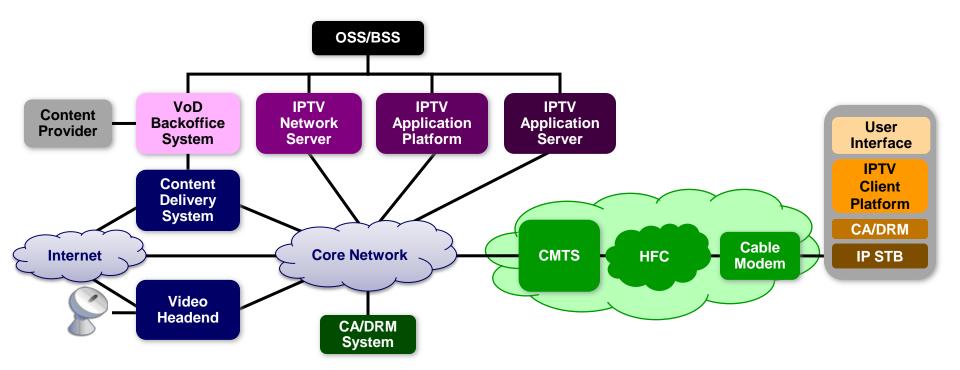
EPG, content navigation


CAS/DRM, VoD servers, asset management, service packaging

EAS, STB support, network management

Billing, triple-play integration, subscriber management

Telco IPTV System Reference Architecture


IP Content and Delivery over Fibre/xDSL Access

BRKSPV-1999

© 2013 Cisco and/or its affiliates. All rights reserved.

Cable IPTV System Reference Architecture

IP Content and Delivery over DOCSIS (VDOC)

BRKSPV-1999

© 2013 Cisco and/or its affiliates. All rights reserved.

Efficiency Gains From IPTV in Cable Delivery

Variable Bitrate

- VBR provides a bandwidth savings of 40-60%
- IPTV is the best choice for narrowcast statmux and AVC statmux

Switched Video

- · Switching is the way to offer unlimited channels
- IPTV provides built-in switching functionality

Advanced Coding

- AVC provides a bandwidth savings of 50% over MPEG2
- · IPTV solves the problem of slow channel change

QAM Sharing

- · Convergence provides further bandwidth savings
- · We can share QAMs for VoD and SDV as well as for video and DOCSIS

Types of Video Services

Transport (Contribution and Primary Distribution)

IPTV /CATV (Secondary Distribution)

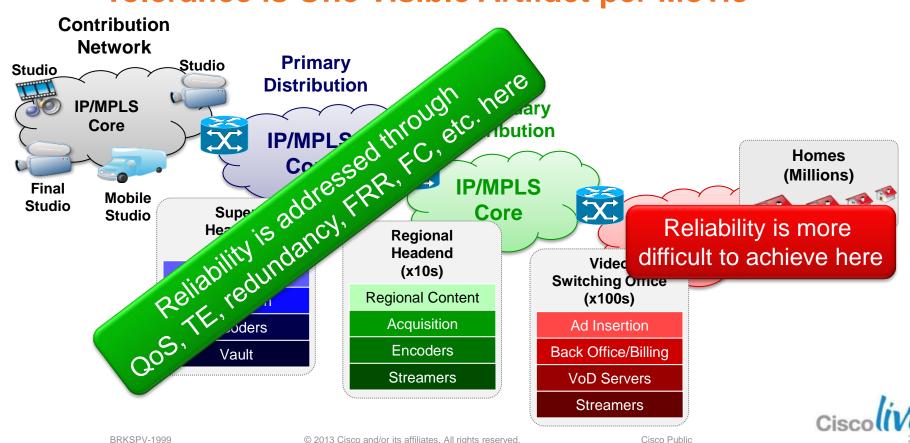
IP multicast distribution from centralised super headends Driving enhanced multicast features and functions

VoD (Secondary Distribution)

Distributed architecture for better scalability Non-real-time content distribution to caches

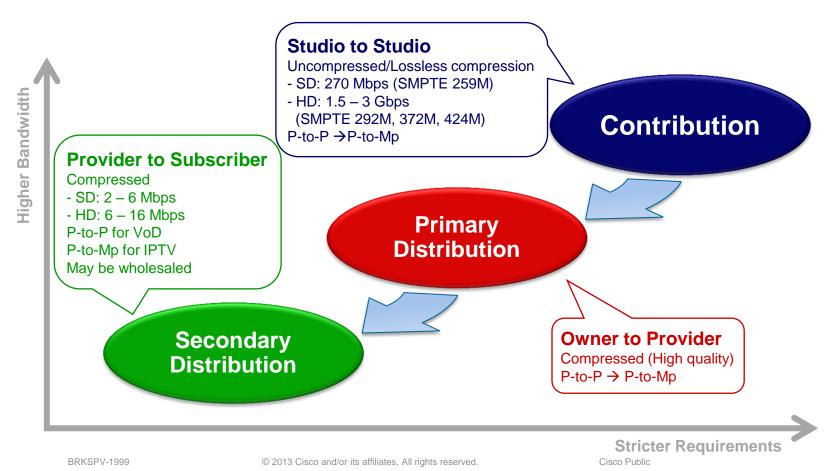
Enterprise

mVPN based


Driving enhanced multicast features and functions

Over-the-Top (e.g., Hulu, Apple TV, Netflix)

Adaptive streaming methods are quickly becoming ubiquitous



IPTV *must* **Deliver Entertainment-Caliber Video Tolerance is One Visible Artifact per Movie**

© 2013 Cisco and/or its affiliates. All rights reserved.

Taxonomy of Video Service Providers

Digital Video Bandwidths

Uncompressed Digital Video	
SDTV (480i CCIR 601 over SD-SDI SMPTE 259M)	165.9 – 270 Mbps
HDTV (1080i or 720p over HD-SDI SMPTE 292M)	1.485 Gbps
HDTV (1080p over Dual Link HD-SDI SMPTE 372M or 3G-SDI SMPTE 424M)	2.970 Gbps
MPEG-2 Compressed Video	
SDTV Broadcast (3.75 Mbps for Cable VoD)	3 – 6 Mbps
HDTV Broadcast (19.3 Mbps for ATSC DTV)	12 – 20 Mbps
SDTV Production (Contribution – 4:2:2 I-frame only)	18 – 50 Mbps
SDTV Production (Contribution – 4:2:2)	20 – 30 Mbps
HDTV Production (Contribution – 4:2:2)	34 – 60 Mbps
JPEG-2000 HDTV Production (Contribution – 4:4:4 I-frame only)	150 - 300 Mbps
MPEG-4 AVC / H.264 Compressed Video	
SDTV Broadcast (~50% less than MPEG-2)	1.5 – 3 Mbps
HDTV Broadcast (1080i)	6 – 9 Mbps
	Cisco

Video SLA Requirements

Throughput

Addressed through capacity planning and QoS (i.e., Diffserv)

Delay/Jitter

Controlled with QoS

Absorbed by de-jittering buffer at IP STB

We desire to minimise jitter buffer size to improve responsivity Jitter originating in the core is rather insignificant

Packet Loss

Controlling loss is the main challenge

Service Availability

Proportion of time for which the specified throughput is available within the bounds of the defined delay and loss

Video Transport in the Core Networks

Four Primary Causes for Packet Loss

Excess Delay

Renders media packets essentially lost beyond an acceptable bound Can be prevented with appropriate QoS (i.e., Diffserv)

Congestion

Considered as a catastrophic case, i.e., fundamental failure of service Must be prevented with appropriate QoS and admission control

PHY-Layer Errors

Apply to core and access – Occurrence in core is far less Considered insignificant compared to losses due to network failures

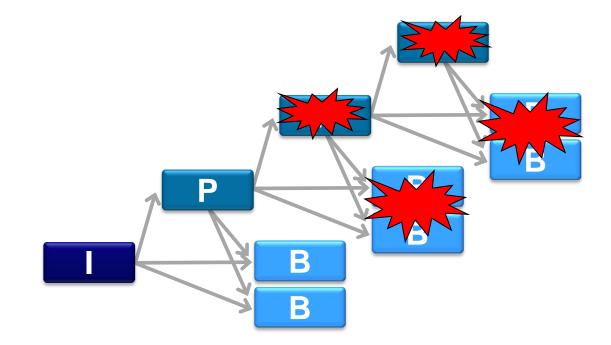
Network Reconvergence Events

Occur at different scales based on topology, components and traffic Can be eliminated with high availability (HA) techniques

What are the Core Impairment Contributors?

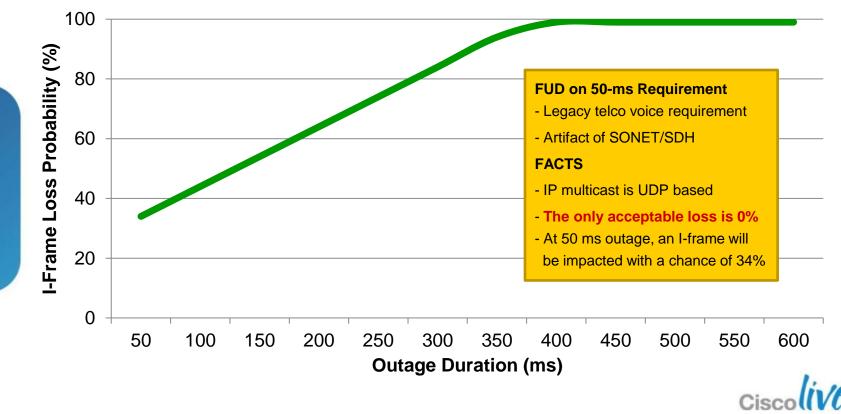
	Impairment Rate
Trunk failures	.0010 /2h
Hardware failures	.0003 /2h
Software failures	.0012 /2h
Non-stop forwarding (NSF) and Stateful switch-over (SSO) help here	
Software upgrades (Maintenance)	.0037 /2h
Modular code (IOS-XR) helps here	
Total	.0062 /2h
	(One every two weeks)
Note that average mean time between errors on a DSL line is in the order of	

minutes when no protection is applied

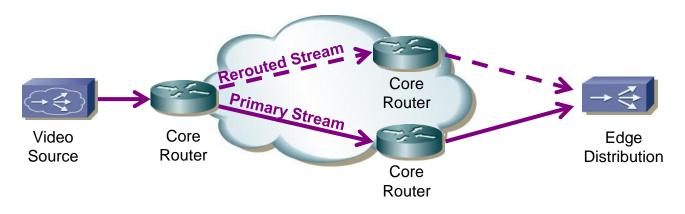

Back of envelope calculations across several SPs show mean time between core failures affecting video is > 100 hours

Source: Data from industry standards, customers and assumptions

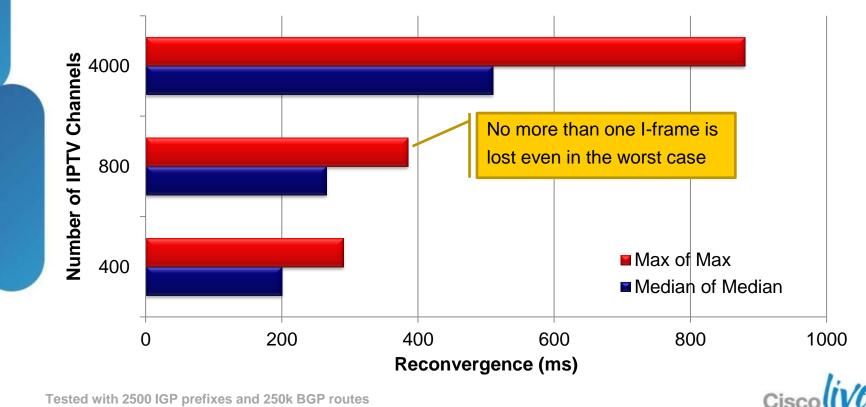
BRKSPV-1999


© 2013 Cisco and/or its affiliates. All rights reserved.

Unequal Importance of Video Packets A Simple MPEG Video Group of Pictures (GoP)

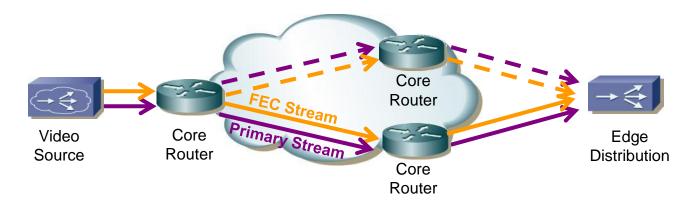


MPEG Frame Impact from Packet Loss GoP Size: 500 ms (I:P:B = 7:3:1)


Fast Convergence or Fast Reroute

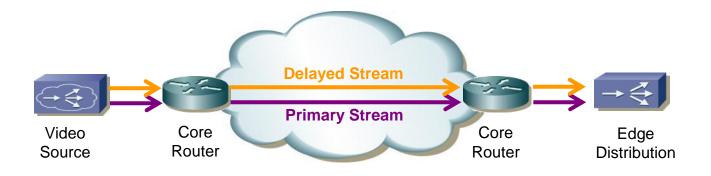
- Network reconverges (reroutes) on a network (link or node) failure
- Fast Convergence (FC) Fast Reroute (FRR)
 - ✓ Lowest bandwidth requirements in working and failure cases
 - ✓ Lowest solution cost and complexity
 - ! Requires fast converging network to minimise visible impact of loss
 - × Is NOT hitless Loss of connectivity before connectivity is restored

Multicast (SSM) Fast Convergence on CRS-1 Convergence Time Following A Failure



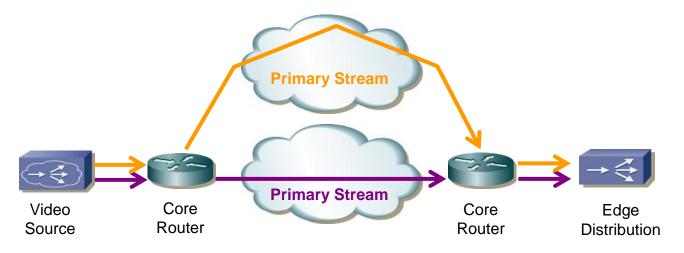
BRKSPV-1999

© 2013 Cisco and/or its affiliates. All rights reserved.

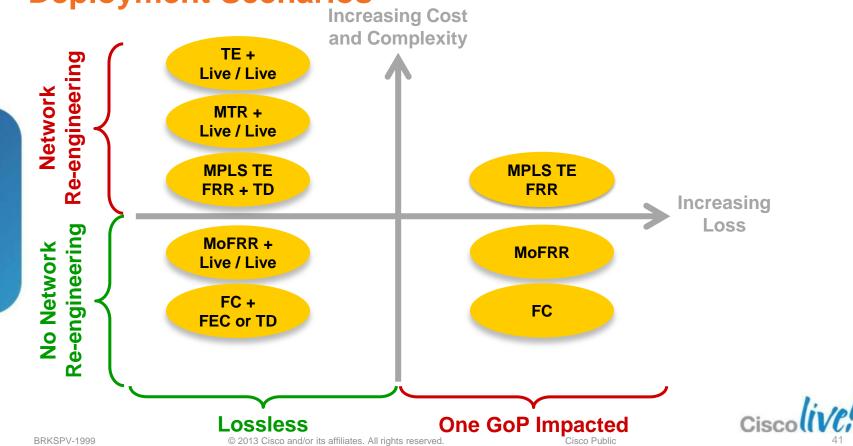

Cisco Public

Forward Error Correction (FEC)

- FEC adds redundancy to the source data to allow to detect and repair losses
- FEC
 - \checkmark Is hitless from loss due to core network failures if loss can be constrained
 - ✓ Does not require path diversity Works for all topologies
 - ! Requires fast converging network to minimise FEC overhead
 - Incurs delay Longer outages require larger overhead or larger block sizes (More delay)


Temporal Diversity (Redundancy)

- Let Q (ms) denote the max outage duration that is intended to be repaired
- Packets are transmitted twice, each separated by Q-ms delay
- Temporal diversity
 - \checkmark Is hitless from loss due to core network failures if loss can be constrained
 - ✓ Does not require path diversity Works for all topologies
 - ! Requires fast converging network to minimise Q
 - × Introduces 100% overhead and Q-ms delay


Spatial (Path) Diversity – Live/Live

- Two streams are sent over diverse paths in the core
- Spatial diversity
 - \checkmark Introduces no delay if the paths have equal propagation delays
 - × Requires network-level techniques to ensure spatial diversity
 - × Incurs 100% overhead
 - May not be an issue where redundant capacity is normally provisioned
 - E.g., dual-plane core networks

Toward Lossless IPTV Transport Deployment Scenarios

Towards Lossless IPTV Transport Reading

"Toward lossless video transport," IEEE Internet Computing, Nov./Dec. 2011

"Designing a reliable IPTV network," IEEE Internet Computing, May/June 2009

Video Distribution in the Access Networks

VQE – A Unified QoE Solution

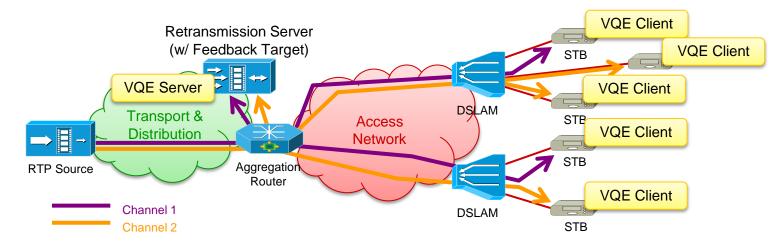
Glitch-Free Audiovisual Quality, Short and Consistent Zapping

IPTV viewers have two criteria to judge their service

Artifact-free audiovisual quality

Loss may be correlated in spatial and/or temporal domain, must be recovered quickly

Loss-repair methods must be multicast friendly


Short and consistent zapping times

Compression and encryption used in digital TV increase the zapping times Multicasting in IPTV increases the zapping times

Service providers need a scalable unified solution that

Is standards-based and interoperable with their infrastructure Enables versatility, quick deployment and visibility into the network Extends the service coverage area, and keeps CapEx and OpEx low

A Simplified Model

Each TV channel is served in a unique (SSM) multicast session

IP STBs join the respective multicast session for the desired TV channel Retransmission servers join all multicast sessions

• Unicast feedback from IP STBs are collected by the feedback target

NACK messages reporting missing packets, rapid channel change requests

RTCP receiver and extended reports reporting reception quality

BRKSPV-1999

© 2013 Cisco and/or its affiliates. All rights reserved.

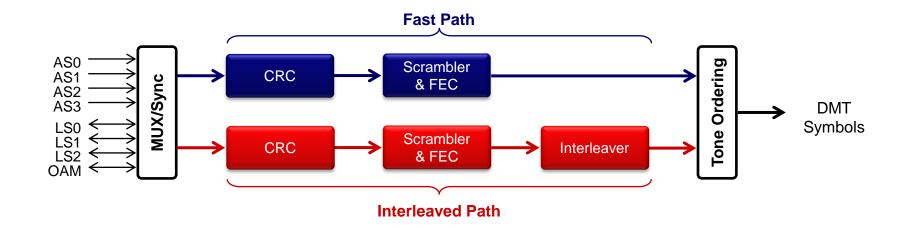
Cisco Public

Impairments in xDSL Networks

Twisted pair is subject to

Signal attenuation: Use shorter loops Cross talk: Use Trellis Coding and RS-based FEC Impulse noise: Use RS-based FEC with interleaving

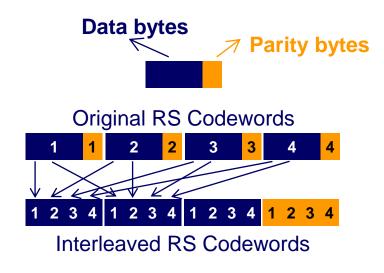
There are three types of DSL impulse noise


REIN: Short burst of noises (< 1 ms) PEIN: Individual impulse noise (> 1 ms, < 10 ms) SHINE: Individual impulse noise (> 10 ms)

We observe different noise characteristics

Among different SP networks Among different loops in the same SP network

ADSL Transmitter Reference Model ITU-T Recommendation G.992.1



ADSL and ADSL2+ Configurations

ADSL 239 bytes 16 bytes	ADSL2+ 69 bytes
,	-
16 bytes	10 bytes
	10 bytes
8 bytes	5 bytes
255 bytes	79 bytes
1	11
250 us	250 us
8.0 Mbps	27.4 Mbps
7.5 Mbps	24 Mbps
32	352
7874 bytes	27378 bytes
7.87 ms	7.97 ms
8.16 ms	8.10 ms
	1700 huter
256 bytes	1760 bytes
	32 7874 bytes 7.87 ms 8.16 ms

Example: Interleaving of RS Codewords

Interleaving

- ✓ Spreads a bursty error among multiple codewords
- \checkmark Allows the decoder to repair the error with fewer parity bytes
- × Introduces delay
- * Renders the whole block useless upon a decoding failure

Fast vs. Interleaved Path

Assumptions

One impulse noise arrives every 15 seconds 2% of these impulses cause an error

Conditional Probability of (DMT error | There is an error)

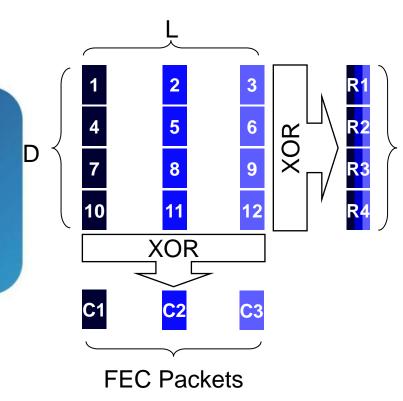
85% probability for one DMT in error 12% probability for two DMTs in error

3% probability for three or more DMTs in error

Fast Path

ADSL/ADSL2+: One (maybe two) IP packet loss in every 750 seconds

Interleaved Path (Interleaving delay: 8 ms)


ADSL: Up to 7 IP packet losses (at the net rate) in every 5000 seconds ADSL2+: Up to 19 IP packet losses in every 25000 seconds

First-Line of Defence in Loss Repair 1-D/2-D Parity Forward Error Correction

Packets

FEC C

- Source Block Size: D x L
- I-D Column FEC (for Bursty Losses)

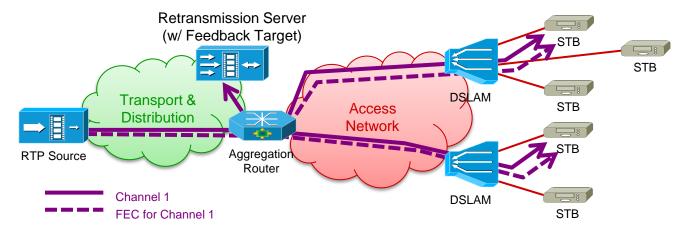
Each column produces a single packet

Overhead = 1 / D

L-packet duration should be larger than the (target) burst duration

1-D Row FEC (for Random Losses)

Each row produces a single packet


Overhead = 1/L

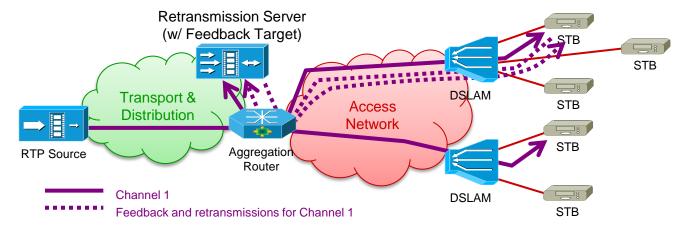
2-D Column + Row FEC

Overhead = (D+L)/(DxL)

First-Line of Defence in Loss Repair 1-D/2-D Parity Forward Error Correction

Each TV channel may be associated with one or more FEC streams

FEC streams may have different repair capabilities


IP STBs may join the respective multicast sessions to receive FEC stream(s)

General Remarks

- ✓ FEC scales extremely well with upfront planning, easily repairs spatially correlated losses
- * Longer outages require larger overhead or larger block sizes (More delay)
- FEC requires encoding/decoding operations

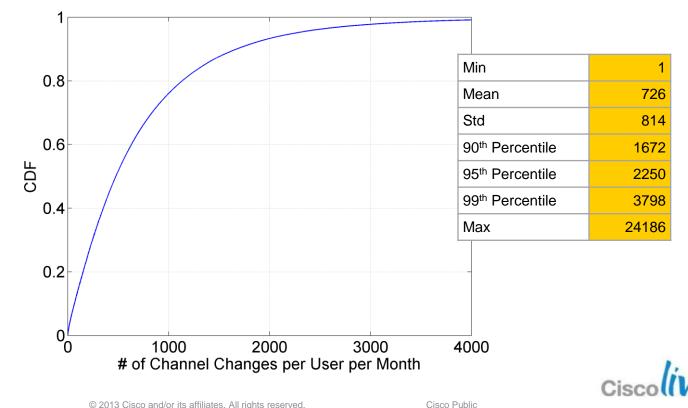
Ciscolive!

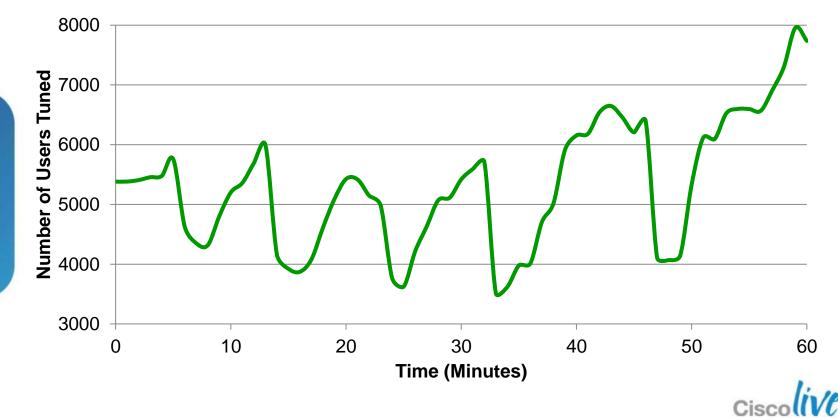
Second-Line of Defence in Loss Repair RTP Retransmissions

 There is a (logical) feedback target for each TV channel on the retransmission server If optional FEC cannot repair missing packets, IP STB sends an RTCP NACK to report missing packets

Retransmission server pulls the requested packets out of the cache and retransmits them

- General Remarks
 - ✓ Retransmission recovers only the lost packets, so no bandwidth is wasted
 - * Retransmission adds a delay of destination-to-source-to-destination
- Protocol suite comprises RFCs 3550, 4585, 4588 and 5760




Improving Viewer Quality of Experience

TV Viewers Love Zapping Results are Based on 227K+ Users in NA

Zappings are Correlated in Temporal Domain On a Sunday between 8:00 – 9:00 PM

Delay Elements in Multicast MPEG2-TS Video

Multicast Switching Delay

IGMP joins and leaves

Route establishment (Generally well-bounded)

Reference Information Latency

PSI (PAT/CAT/PMT) acquisition delay CAS (ECM) delay

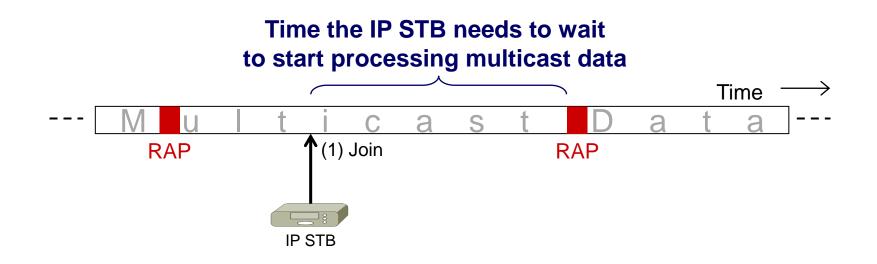
RAP acquisition delay

Buffering Delays

Loss-repair, de-jittering, application buffering

MPEG decoder buffering

Reference information latency and buffering delays are more critical in MPEG-based AV applications

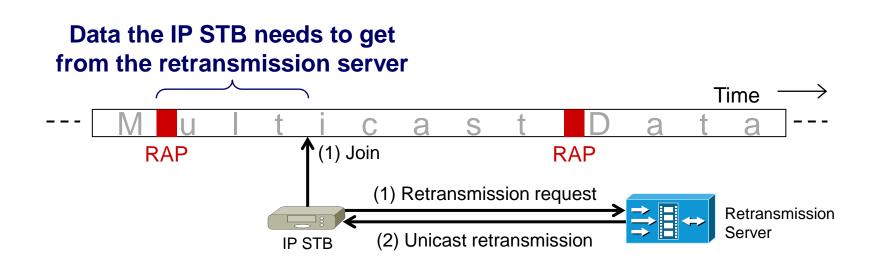


BRKSPV-1999

Typical Zapping Times on DSL IPTV

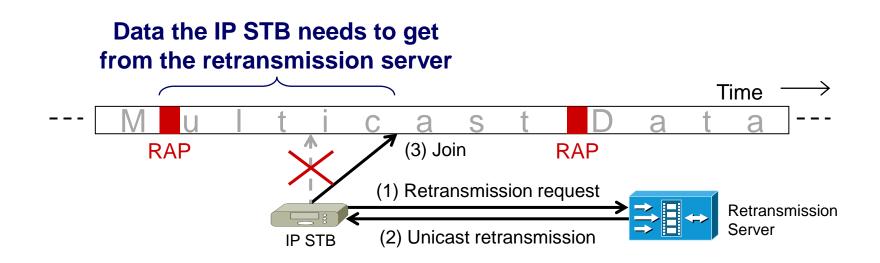
Unit TimeTotal TimeIP STB sends IGMP Leave< 100 msIP STB sends IGMP Join< 100 msDSLAM gets IGMP Leave< 100 msDSLAM gets IGMP Join< 100 msDSLAM switches streams50 msS0 ms- 250 msLatency on DSL line~ 10 msIP STB receives PAT/PMT~ 150 msDe-jittering buffer~ 150 msWait for CA< 50 msWait for I-frame0 – 3 sMPEG decoding buffer1 – 2 sIP coding< 50 msS0 me< 50 m			
IP STB sends IGMP Join< 100 ms		Unit Time	Total Time
DSLAM gets IGMP Leave< 100 msDSLAM gets IGMP Join< 100 ms	IP STB sends IGMP Leave	< 100 ms	
DSLAM gets IGMP Join< 100 ms~ 200 msDSLAM switches streams50 ms~ 250 msLatency on DSL line~ 10 ms~ 260 msIP STB receives PAT/PMT~ 150 ms~ 400 msBufferingDe-jittering buffer~ 150 ms~ 550 msWait for CA< 50 ms~ 600 msWait for I-frame0 – 3 s0.5 – 3.5 sMPEG decoding buffer1 – 2 s1.5 – 5.5 s	IP STB sends IGMP Join	< 100 ms	
DSLAM switches streams 50 ms ~ 250 ms Latency on DSL line ~ 10 ms ~ 260 ms IP STB receives PAT/PMT ~ 150 ms ~ 400 ms Buffering ~ 150 ms ~ 400 ms Wait for CA ~ 150 ms ~ 550 ms Wait for I-frame 0 – 3 s 0.5 – 3.5 s MPEG decoding buffer 1 – 2 s 1.5 – 5.5 s	DSLAM gets IGMP Leave	< 100 ms	
Latency on DSL line ~ 10 ms ~ 260 ms IP STB receives PAT/PMT ~ 150 ms ~ 400 ms Buffering ~ 150 ms ~ 400 ms De-jittering buffer ~ 150 ms ~ 550 ms Wait for CA < 50 ms	DSLAM gets IGMP Join	< 100 ms	~ 200 ms
IP STB receives PAT/PMT ~ 150 ms ~ 400 ms Buffering ~ 150 ms ~ 550 ms De-jittering buffer ~ 150 ms ~ 550 ms Wait for CA < 50 ms ~ 600 ms Wait for I-frame 0 – 3 s 0.5 – 3.5 s MPEG decoding buffer 1 – 2 s 1.5 – 5.5 s	DSLAM switches streams	50 ms	~ 250 ms
Buffering ~ 150 ms ~ 550 ms De-jittering buffer ~ 150 ms ~ 600 ms Wait for CA < 50 ms	Latency on DSL line	~ 10 ms	~ 260 ms
De-jittering buffer ~ 150 ms ~ 550 ms Wait for CA < 50 ms	IP STB receives PAT/PMT	~ 150 ms	~ 400 ms
Wait for CA < 50 ms ~ 600 ms Wait for I-frame 0 – 3 s 0.5 – 3.5 s MPEG decoding buffer 1 – 2 s 1.5 – 5.5 s	Buffering		
Wait for I-frame 0 – 3 s 0.5 – 3.5 s MPEG decoding buffer 1 – 2 s 1.5 – 5.5 s	De-jittering buffer	~ 150 ms	~ 550 ms
MPEG decoding buffer $1-2 s$ $1.5-5.5 s$	Wait for CA	< 50 ms	~ 600 ms
	Wait for I-frame	0 – 3 s	0.5 – 3.5 s
Decoding < 50 ms 1.5 - 5.5 s	MPEG decoding buffer	1 – 2 s	1.5 – 5.5 s
C	Decoding	< 50 ms	1.5 – 5.5 s
			C

A Typical Multicast Join



RAPs might be far away from each other RAP data might be large in size and non-contiguous

© 2013 Cisco and/or its affiliates. All rights reserved.


Cise

Concurrent Multicast Join and Retransmission

If the residual bandwidth remaining from the multicast stream is small, retransmission may not be able to provide any acceleration

Retransmission Followed by Multicast Join

More data are retransmitted due to deferred multicast join However, IP STB ultimately achieves a faster acquisition

Proposed Solution Unicast-Based Rapid Acquisition

IP STB says to the retransmission server:

"I have no synch with the stream. Send me a repair burst that will get me back on the track with the multicast session"

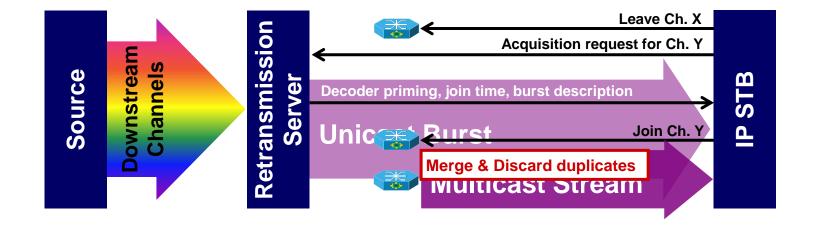
Retransmission server

Parses data from earlier in the stream and bursts faster than real time

Coordinates the time for multicast join and ending the burst

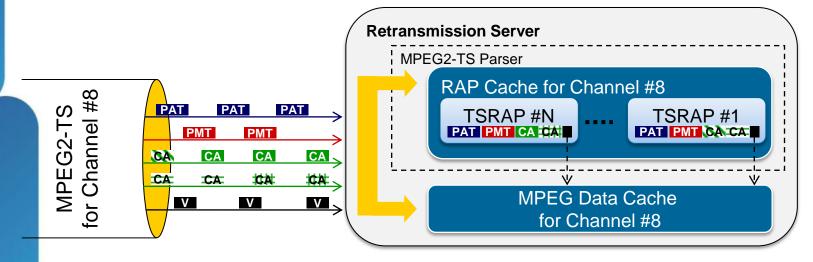
This solution uses the existing toolkit for repairing packet losses

RFC 3550 (RTP/RTCP)


RFC 4585 (RTP AVPF)

RFC 4588 (RTP Retransmissions)

RFC 5760 (RTCP Extensions for SSM)


Unicast-Based Rapid Acquisition http://tools.ietf.org/html/rfc6285

How to Prime the MPEG Decoder?

http://tools.ietf.org/html/draft-begen-avt-rtp-mpeg2ts-preamble

- Transport Stream Random Access Point (TSRAP) may include
 - PAT: Program Association Table, PMT: Program Map Table
 - PCR: Program Clock Reference used to initialise the decoder and STB clocks
 - SEQ: Sequence Header (MPEG2 video)
 - SPS: Sequence Parameter Set (H.264 video), PPS: Picture Parameter Set (H.264 video)
 - ECM: Entitlement Control Messages

Experimental Setup

Comparison

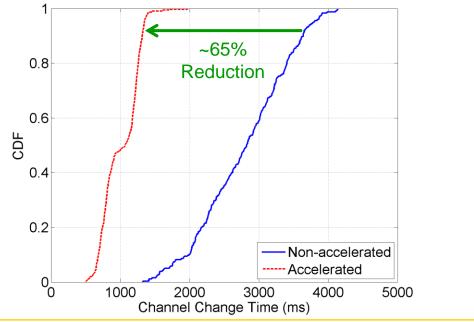
One IP STB with non-accelerated channel changes One IP STB with accelerated channel changes

Video Streams

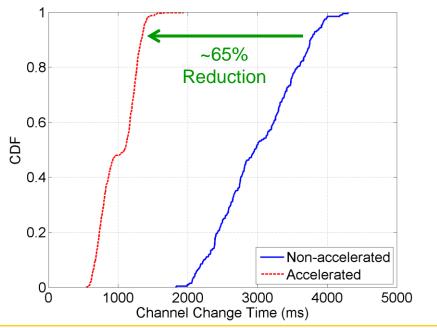
Encoded with AVC at 2 Mbps and 30 fps

One stream with 15 frames per GoP (Short-GoP)

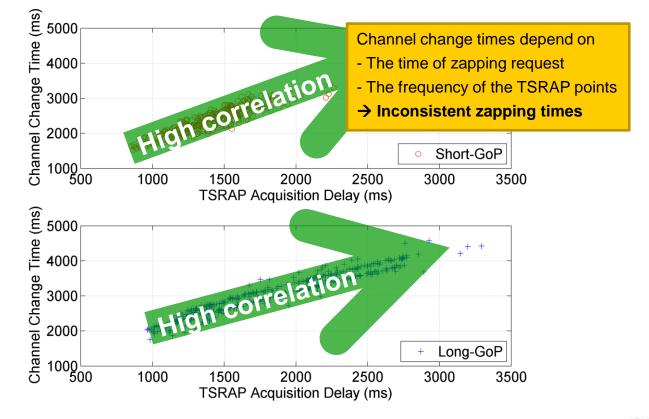
One stream with 60 frames per GoP (Long-GoP)


Transport

1356-byte RTP packets (7 TS packets plus RTP/UDP/IPv4 headers)20% additional bandwidth consumption for bursting500 ms loss-repair buffer in each IP STB


Cisco Public

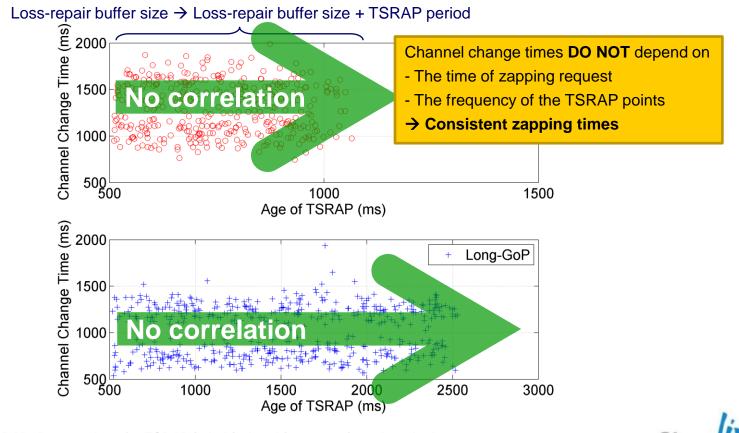
Short-GoP Results



	Min	Mean	Std	95 th	99 th	Max	
Non-accelerated	1323	2785	645	3788	4101	4140	
Accelerated	501	1009	260	1345	1457	1965	1
						Cis	coliv

Long-GoP Results

When Acceleration is Disabled


TSRAP Acquisition Delay: Time for IP STB to receive all TS-related information

BRKSPV-1999

© 2013 Cisco and/or its affiliates. All rights reserved.

Cisco Public

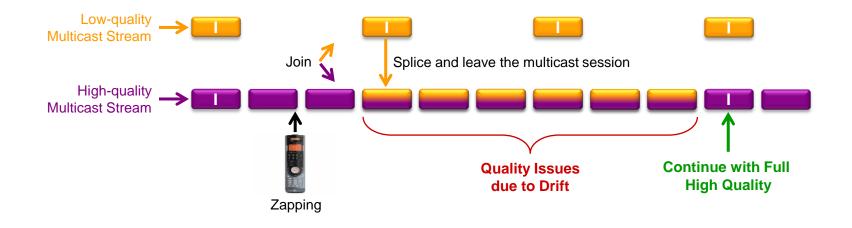
When Acceleration is Enabled

Age of TSRAP: Denotes how far TSRAP is behind multicast session when the burst starts

BRKSPV-1999

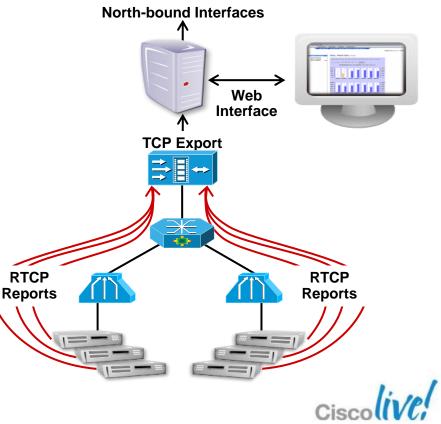
© 2013 Cisco and/or its affiliates. All rights reserved.

Cisco Public


Unicast-Based Rapid Acquisition Reading

"Scaling server-based channel-change acceleration to millions of IPTV subscribers," Packet Video Wksp. 2012

"Reducing channel-change times with the real-time transport protocol," IEEE Internet Computing, May/June 2009


Companion-Stream Approach The Basic Idea

VQE QoS/QoE Monitoring Tools to Isolate and Pinpoint the Problematic Locations

- VQE-S collects RTCP reports and outputs them to the management application
- Management application
 - Collects raw data from exporter Organises database
 - Conducts data analysis, trends
 - Create alerts
- Management application supports standardsbased north-bound interfaces
- Reports and analysis can be granular to Regions, edge routers DSLAMs, access lines Home gateways
 - Set-tops
- Set-tops can support RTCP reporting and TR-069 (or TR-135) concurrently

Cisco Public

RTCP Sender/Receiver/Extended Reports

RTCP Sender Reports provide info on data sent recently

Wallclock time and the corresponding RTP timestamp

Total number of packets/bytes sent

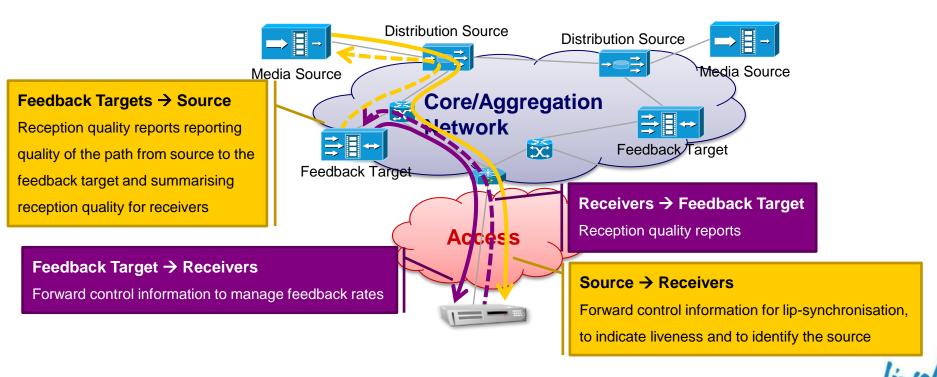
RTCP Receiver Reports summarise the reception quality

Timestamp of (and delay from) the last received sender report

Highest sequence number seen so far

Number and fraction of the lost RTP packets

Estimate of the interarrival jitter


RTCP Extended Reports (XR) provide

Detailed transport-level stats

Application-specific information about RTP transport

Four RTCP Flows, Two RTCP Loops

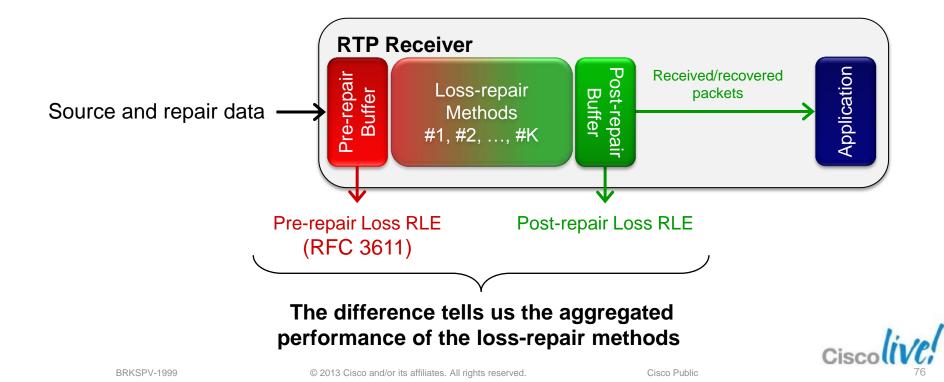
RTCP XR Framework

 Provides several advantages over traditional and proprietary monitoring solutions

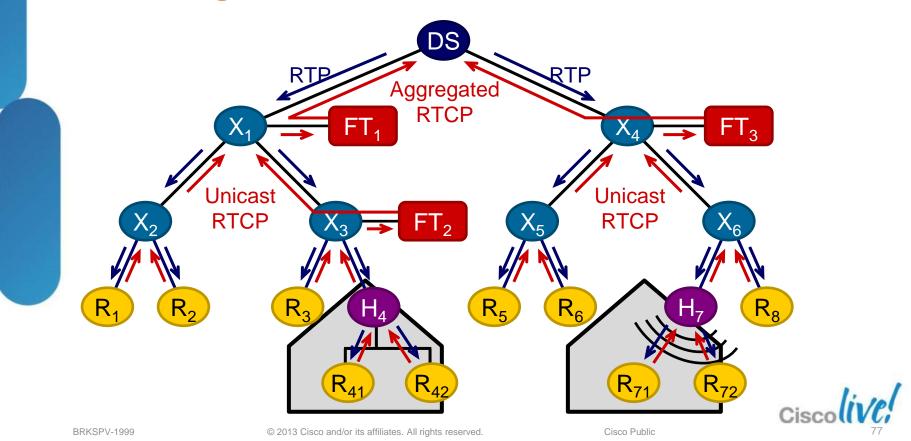
Easily extensible to report on

Packet-level loss events/patterns, mean time between losses, loss durations, etc.

Correlation engines identify, characterise and isolate the problems


Audiovisual reception quality

Effectiveness of the loss-repair methods


Loss-repair methods can be adapted depending on the network conditions Effectiveness of channel change acceleration

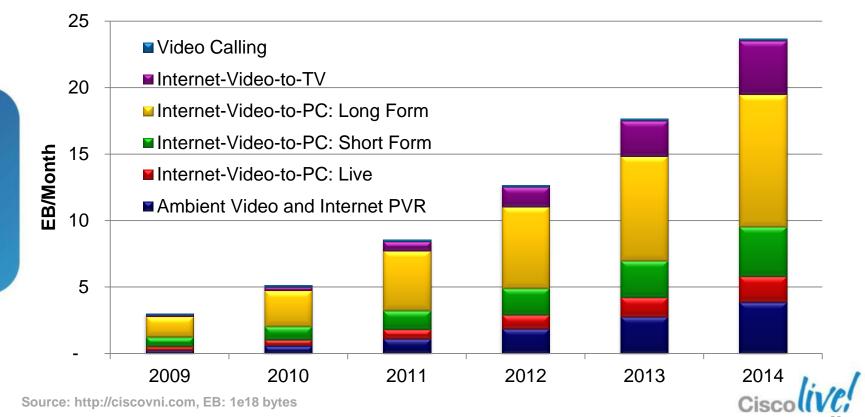
RTCP XR Example: Loss RLE Reports http://tools.ietf.org/html/rfc5725

Fault Isolation through Network Tomography Monitoring Viewer QoE with No Human Assistance

Fault Isolation through Network Tomography Reading

"On the scalability of RTCP-based network tomography for IPTV services," IEEE CCNC 2010

"On the use of RTP for monitoring and fault isolation in IPTV," IEEE Network, Mar./Apr. 2010



Part II: Internet Video and Adaptive Streaming

Consumer Internet Video Composition

BRKSPV-1999

© 2013 Cisco and/or its affiliates. All rights reserved.

Internet Video Essentials

Reach	Reach all connected devices	
Scale	 Enable live and on-demand delivery to the mass market 	
Quality of Experience	 Provide TV-like consistent rich viewer experience 	
Business	 Enable revenue generation thru paid content, subscriptions, targeted advertising, etc. 	
Regulatory	 Satisfy regulations such as captioning, ratings and parental control 	
Name of the second seco	Cisco	

Example Over-the-Top (OTT) Services

The Lines are Blurring between TV and the Web

AT&T U-verse – US

Verizon FlexView – US

ABC TV – Australia

TiViBu – Turkey

Amazon – US

© 2013 Cisco and/or its affiliates. All rights reserved.

HBO GO Delivery of TV Content to IP-Enabled Devices

Subscribers can watch HBO content via the Internet or 3G (only in the US)

First launched in Feb. 2010 with Verizon FiOS

Later expanded to AT&T U-Verse, DirecTV, DISH Network, Suddenlink, WOW!, Comcast Xfinity, Time Warner Cable (Beta available for Cox, Harvard, etc.)

Content includes more than 1,400 titles, every episode of every season of HBO series

http://www.hbogo.com/

BRKSPV-1999

© 2013 Cisco and/or its affiliates. All rights reserved.

Netflix

Content

Over 100K titles (DVD) Shipped 1 billionth DVD in 02/07 Shipped 2 billionth DVD in 04/09

Revenue

\$905M in Q3 2012 \$3.2B in 2011 and \$2.1B in 2010

\$3.26 III 2011 and \$2.16 III 20

Streaming Subscribers

25.1M in the US by Q3 2012 (4.3M elsewhere) [8.6M DVD subscribers in the US]

Competitors

Hulu Plus, Amazon Prime, TV Everywhere **Difficulties**

ISP data caps (Most notably in Canada) ISP/CDN throughput limitations

Big Data at Netflix

Ratings: 4M/day

Searches: 3M/day

Plays: 30M/day

2B hours streamed in Q4 2011, 3B hours in Q3 2012

Plans

Unlimited streaming (only) for \$7.99 (US and Canada)

[Supported by over 450 devices]

1 DVD out at-a-time for \$7.99 (US)

Blu-rays for an additional \$2 per month (US)

Hulu

hulu

Summary

- Available in the US and Japan
- Ad-supported subscription service business model
 - 2M Hulu Plus subscribers in 2012
- Revenue of \$420M (2011), \$263M (2010), \$108M (2009) and \$25M (2008)

Content

Catch-up TV (30000+ episodes) 900+ movies 350+ content partners Encoded at 480, 700, 1000, 2500 and 3200 Kbps

Devices

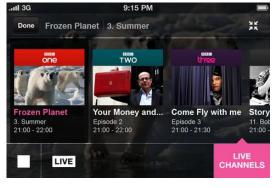
Primarily PC and Mac Smartphones and tables (only w/ Hulu Plus) Internet-connected TV (only w/ Hulu Plus)

NBCUniversal

News Corporation

BBC iPlayer Available (Almost) Globally

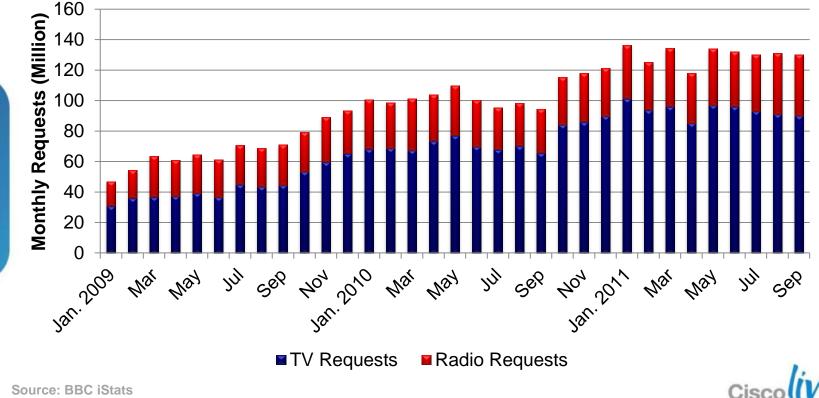
- Statistics for September 2011
 - **Total Requests**


90M for TV programs (13% of the requests were for live streams) 40M for radio programs (77% of the requests were for live streams)

Devices

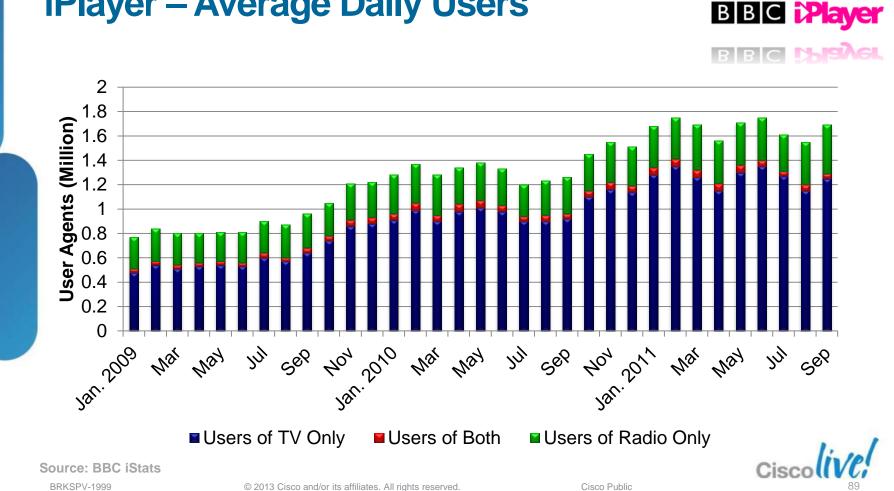
65% computers, 15% Virgin Media, 5% game consoles, %6 mobile devices, %3 tablets

3G streaming is still unavailable on some platforms/operators



Source: BBC iStats BRKSPV-1999

© 2013 Cisco and/or its affiliates. All rights reserved.


iPlayer – Monthly Online Requests

BRKSPV-1999

© 2013 Cisco and/or its affiliates. All rights reserved.

iPlayer – Average Daily Users

Internet Video in the US October 2012

	Unique Viewers (x1000)	Videos (x1000)	Minutes per Viewer
Google Sites	153,212	13,028,148	399.5
Yahoo! Sites	55,253	496,318	53.1
NDN	53,215	550,884	74.3
VEVO	53,105	628,958	40.5
AOL, Inc.	53,089	711,008	45.6
Facebook.com	47,870	252,934	13.3
Viacom Digital	40,914	391,700	43.8
Microsoft Sites	37,214	432,457	43.8
CBS Interactive	31,805	297,749	59.9
Grab Media, Inc.	31,647	157,946	27.5
Total	182,574	37,242,927	1,254.4
ource: comScore Video Metrix			C

BRKSPV-1999

© 2013 Cisco and/or its affiliates. All rights reserved.

Internet Video in the EU In 2011

	Videos (March)	Videos (September)	Minutes per Video	Minutes per Viewer
Spain	3.0B	3.2B	6.9	1,096
Italy	2.3B	2.7B	6.7	914
Russia	3.1B	4.7B	7.2	792
Turkey	3.4B	5.0B	7.1	1,660

Source: comScore Video Metrix

BRKSPV-1999

© 2013 Cisco and/or its affiliates. All rights reserved.

Internet Video Delivery – CDN Market

Internet video CDN revenues are expected to grow to \$2B in 2015

Revenue was \$600M in 2010

Price per GB has been decreasing to \$0.15 - \$2.0

Most Internet video providers outsource delivery

50% of the market is dominated by Akamai, Limelight Networks and Level 3

A few very large content providers build their own CDN infrastructure

E.g., Google, Microsoft, Amazon

Only a few network service providers will compete in the global CDN market

Traffic growth is driven by

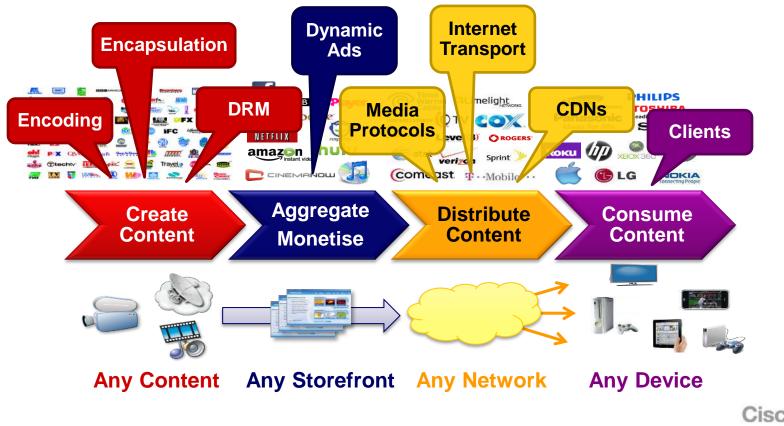
More users

More content

Longer viewing at higher qualities

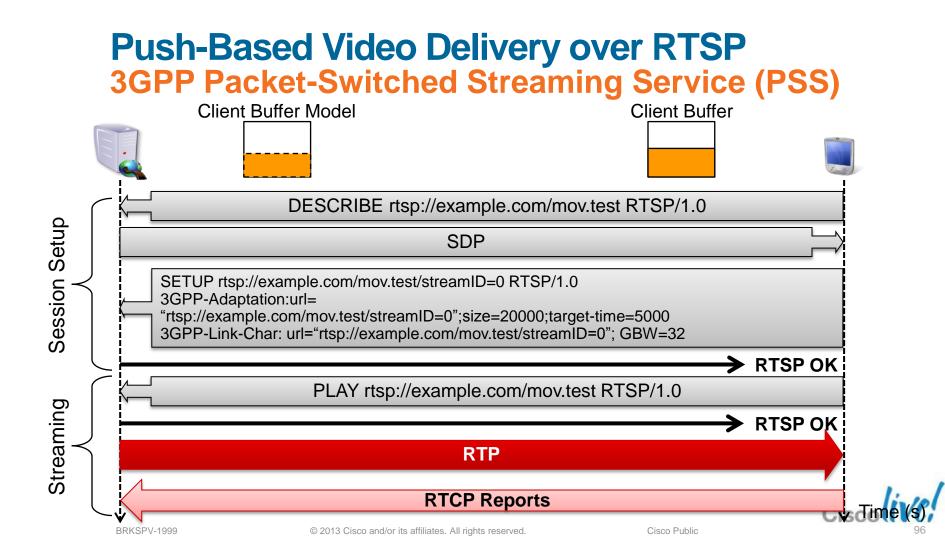
CDN providers are diversifying into value-added services

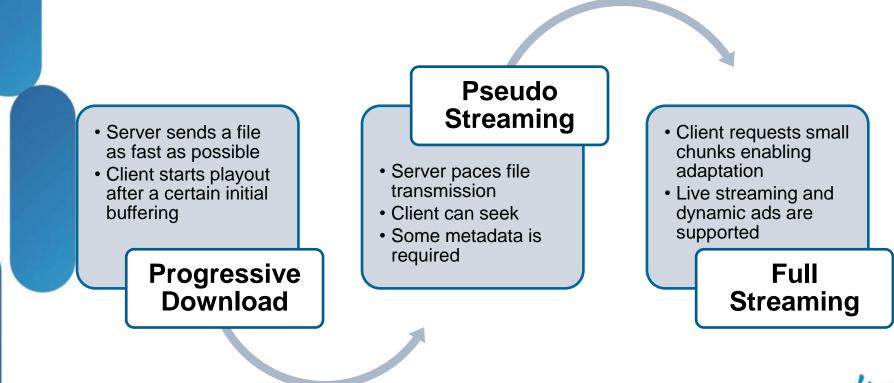
- Advertising business
- Application acceleration



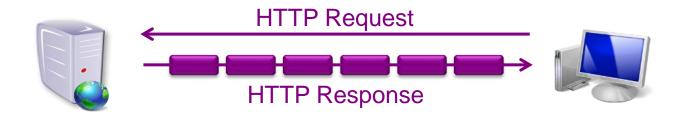
Open Digital Media Value Chain

© 2013 Cisco and/or its affiliates. All rights reserved.


Media Delivery over the Internet


Push and Pull-Based Video Delivery

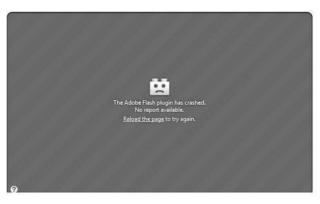
	Push-Based Delivery	Pull-Based Delivery
Source	Broadcasters/servers like	Web/FTP servers such as
	Windows Media	LAMP
	Apple QuickTime,	Microsoft IIS
	RealNetworks Helix	Adobe Flash
	Cisco CDS/DCM	RealNetworks Helix
		Cisco CDS
Protocols	RTSP, RTP, UDP	HTTP, RTMPx, FTP
Video Monitoring and	RTCP for RTP transport	(Currently) Proprietary
User Tracking		
Multicast Support	Yes	No
Cacheability	No	Yes for HTTP



Progressive Download One Request, One Response

What is Streaming?

Streaming is transmission of a continuous content from a server to a client and its simultaneous consumption by the client


Two Main Characteristics

- 1. Client consumption rate may be limited by real-time constraints as opposed to just bandwidth availability
- 2. Server transmission rate (loosely or tightly) matches to client consumption rate

Common Annoyances in Streaming Stalls, Slow Start-Up, Plug-In and DRM Issues

Digital Rights Management (DRM) Error Error Code: N8151

We're sorry, but there is a problem playing protected (DRM) content on your system.

To resolve this problem:

Close your browser.
 Then reopen the browser and try playing again.

If the problem persists, call Netflix at 866-579-7113.

© 2013 Cisco and/or its affiliates. All rights reserved.

Adaptive Streaming over HTTP

Adaptive Streaming over HTTP Adapt Video to Web Rather than Changing the Web

Imitation of Streaming via Short Downloads

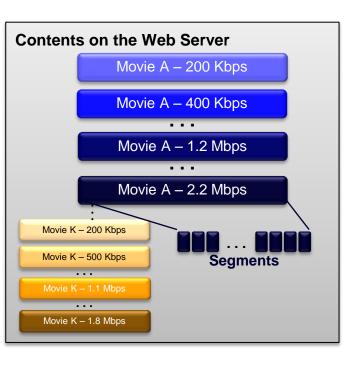
Downloads desired portion in small chunks to minimise bandwidth waste

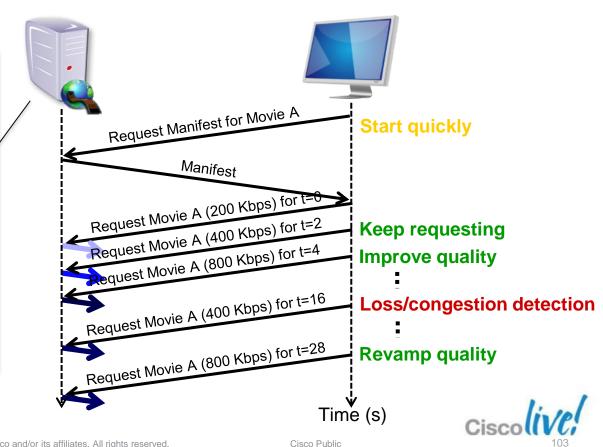
Enables monitoring consumption and tracking clients

Adaptation to Dynamic Conditions and Device Capabilities

Adapts to dynamic conditions anywhere on the path through the Internet and/or home network Adapts to display resolution, CPU and memory resources of the client Facilitates "any device, anywhere, anytime" paradigm

Improved Quality of Experience


Enables faster start-up and seeking (compared to progressive download), and quicker buffer fills Reduces skips, freezes and stutters


Use of HTTP

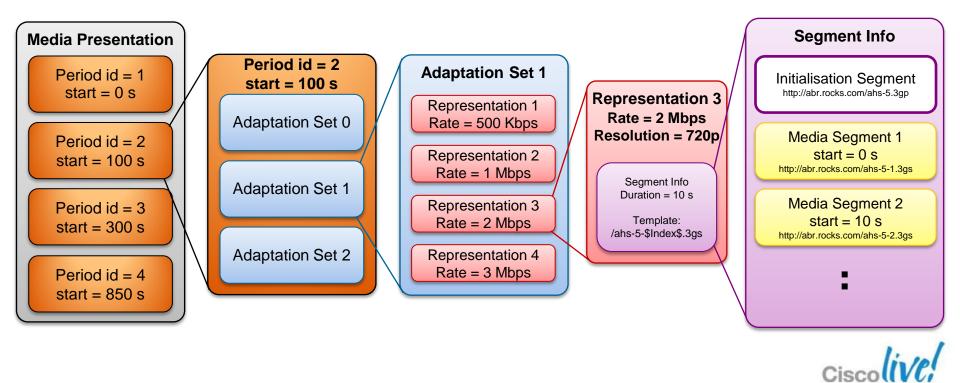
Well-understood naming/addressing approach, and authentication/authorisation infrastructure Provides easy traversal for all kinds of middleboxes (e.g., NATs, firewalls) Enables cloud access, leverages existing HTTP caching infrastructure (Cheaper CDN costs)

Multi-Bitrate Encoding and Representation Shifting

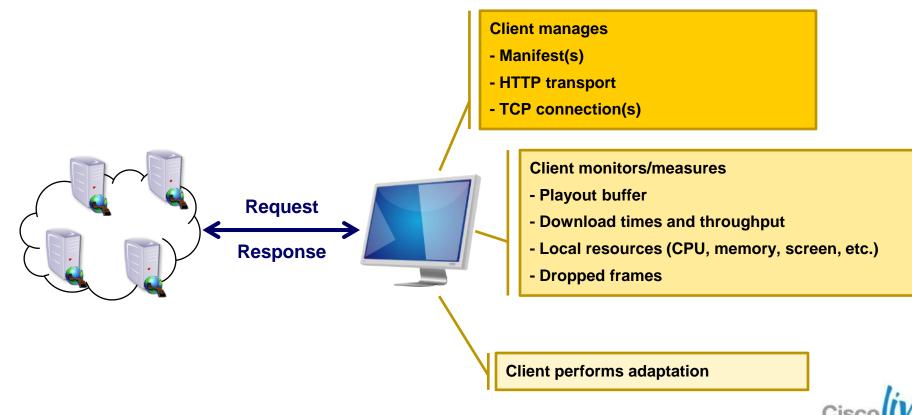
© 2013 Cisco and/or its affiliates. All rights reserved.

Example Representations From Vancouver 2010 Winter Olympics

	Target Encoding Bitrate	Resolution	Frame Rate
Representation #1	3.45 Mbps	1280 x 720	30 fps
Representation #2	1.95 Mbps	848 x 480	30 fps
Representation #3	1.25 Mbps	640 x 360	30 fps
Representation #4	900 Kbps	512 x 288	30 fps
Representation #5	600 Kbps	400 x 224	30 fps
Representation #6	400 Kbps	312 x 176	30 fps



Source: Vertigo MIX10


BRKSPV-1999

© 2013 Cisco and/or its affiliates. All rights reserved.

DASH Media Presentation Description List of Accessible Segments and Their Timings

Smart Clients

Major Players in the Market

Microsoft Smooth Streaming

http://www.iis.net/expand/SmoothStreaming

Apple HTTP Live Streaming

http://tools.ietf.org/html/draft-pantos-http-live-streaming

http://developer.apple.com/library/ios/#documentation/networkinginternet/conceptual/streamingmediaguide/

Netflix

http://www.netflix.com/NetflixReadyDevices

Adobe HTTP Dynamic Streaming

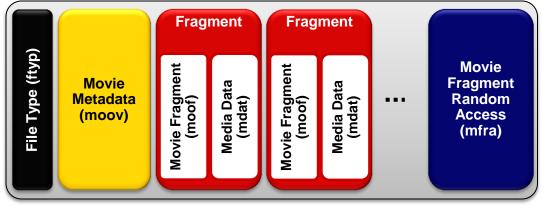
http://www.adobe.com/products/httpdynamicstreaming/

Move Adaptive Stream (Acquired by Echostar)

http://www.movenetworks.com

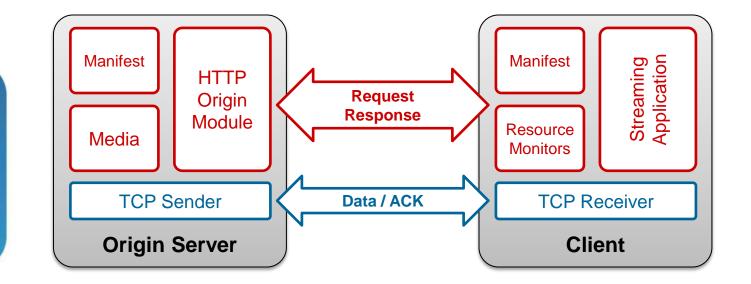
Others

Widevine Adaptive Streaming (Acquired by Google) Vidiator Dynamic Bitrate Adaptation


© 2013 Cisco and/or its affiliates. All rights reserved.

Example Request and Response Microsoft Smooth Streaming

Client sends an HTTP request

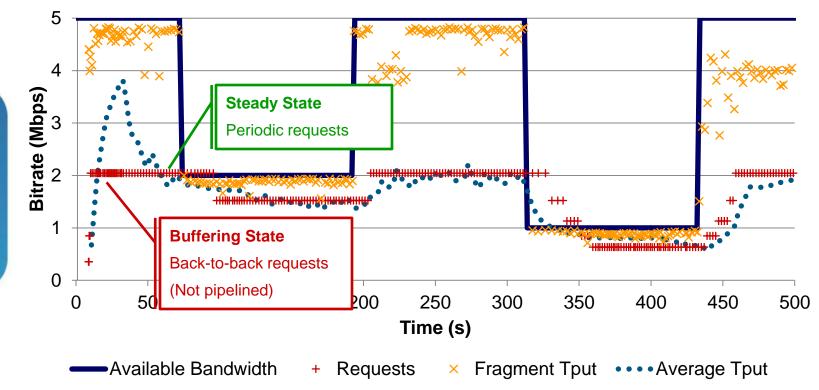

GET 720p.ism/QualityLevels(572000)/Fragments(video=160577243) HTTP/1.1

- Server
 - 1. Finds the MP4 file corresponding to the requested bitrate
 - 2. Locates the fragment corresponding to the requested timestamp
 - 3. Extracts the fragment and sends it in an HTTP response

© 2013 Cisco and/or its affiliates. All rights reserved.

Inner and Outer Control Loops

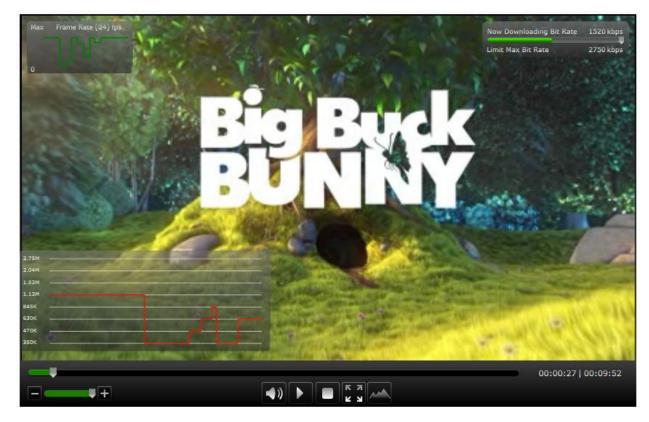
There could be multiple TCPs destined to potentially different servers



© 2013 Cisco and/or its affiliates. All rights reserved.

Cisco Public

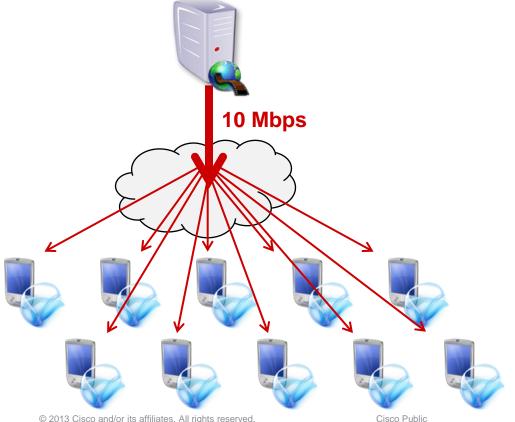
Cisc


Interaction of Inner and Outer Control Loops Microsoft Smooth Streaming Experiments

 Reading: "An experimental evaluation of rate-adaptation algorithms in adaptive streaming over HTTP," ACM MMSys 2011

 BRKSPV-1999
 © 2013 Cisco and/or its affiliates. All rights reserved.
 Cisco Public

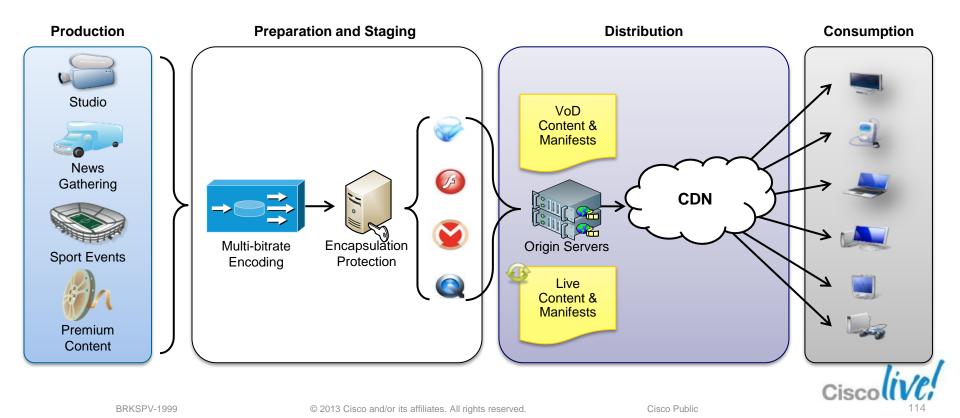
Microsoft Smooth Player Showing Adaptation http://www.iis.net/media/experiencesmoothstreaming



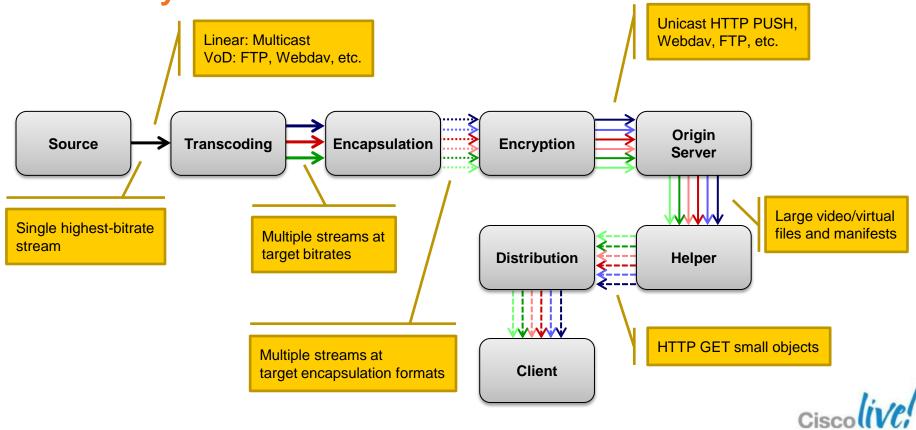
© 2013 Cisco and/or its affiliates. All rights reserved.

Cisco Public

Simple Competition Experiment 10 Microsoft Smooth Clients Sharing 10 Mbps Link



© 2013 Cisco and/or its affiliates. All rights reserved.


10 Microsoft Smooth Clients Sharing 10 Mbps Link Streaming "Big Buck Bunny" (Three Clients are Shown)

End-to-End Over-the-Top Adaptive Streaming Delivery

Adaptive Streaming Content Workflow Today

© 2013 Cisco and/or its affiliates. All rights reserved.

Source Representation

	Container	Manifest	Packaging Tools
Move	2-s chunks (.qss)	Binary (.qmx)	Proprietary
Apple HLS	Fixed-duration MPEG2-TS segments (.ts)	Text (.m3u8)	Popular encoders
Adobe Zeri	Aggregated MP4 fragments (.f4f – a/v interleaved)	Client: XML + Binary (.fmf) Server: Binary (.f4x)	Adobe Packager
Microsoft Smooth	Aggregated MP4 fragments (.isma, .ismv – a/v non-interleaved)	Client: XML (.ismc) Server: SMIL (.ism)	Popular encoders MS Expression
MPEG DASH	MPEG2-TS and MP4 segments	Client/Server: XML	Under development

Source containers and manifest files are output as part of the packaging process

These files are staged on to origin servers

Some origin server implementations could have integrated packagers

Adobe/Microsoft allow to convert aggregated containers into individual fragments on the fly

In Adobe Zeri , this function is called a Helper

In Microsoft Smooth, this function is tightly integrated as part of the IIS

• Server manifest is used by Helper modules to convert the large file into individual fragments

BRKSPV-1999

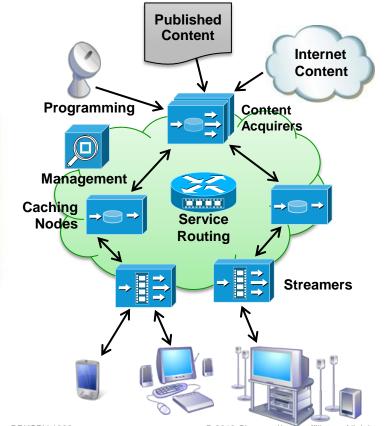
Staging and Distribution

	Origin Server	Packager → OS Interface	Distribution
Move	Any HTTP server	DFTP, HTTP, FTP	Plain Web caches
Apple HLS	Any HTTP server	HTTP, FTP, CIFS	Plain Web caches
Adobe Zeri	HTTP server with Helper	Integrated packager for live and JIT VoD Offline packager for VoD (HTTP, FTP, CIFS, etc.)	 Plain Web caches → Helper running in OS Intelligent caches → Helper running in the delivery edge
Microsoft Smooth	IIS	WebDAV	Plain Web caches Intelligent IIS servers configured in cache mode
MPEG DASH	Any HTTP server	HTTP, FTP, CIFS	Plain Web caches

Delivery

	Client	# of TCP Connections	Transaction Type
Move	Proprietary Move player	3-5	Byte-range requests
Apple HLS	QuickTime X	1 (interleaved)	Whole-segment requests Byte-range requests (iOS5)
Adobe Zeri	OSMF client on top Flash player	Implementation dependent	Whole-fragment access Byte-range access
Microsoft Smooth	Built on top of Silverlight	2 (One for audio and video)	Whole-fragment requests
MPEG DASH	DASH client	Configurable	Whole-segment requests Byte-range requests

In Smooth, fragments are augmented to contain timestamps of future fragments in linear delivery


Thus, clients fetch the manifest only once

In HLS, manifest is continuously updated

Thus, clients constantly request the manifest

Cisco Videoscape Distribution Suite (VDS) The Network is the Platform

Extensible Architecture

Independent scalability of storage, caching and streaming

Non-stop service availability

Convergence of live and on-demand content

Distributed Network

Multi-protocol centralised ingest Popularity-based multi-tier caching Multi-protocol decentralised streaming

Service Routing Functionality

Service routing at the edge or headend Global and local load balancing

© 2013 Cisco and/or its affiliates. All rights reserved.



Emerging Standards

Where We were

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, IN STANT MESSAGING, ETC.)

MPEG – Dynamic Adaptive Streaming over HTTP A New Standard: ISO/IEC 23009-1

Goal

Develop an international, standardised, efficient solution for HTTP-based streaming of MPEG media

The Dynamic Adaptive Streaming over HTTP (DASH) Standard

Defines the MPD (manifest) format and delivery formats using ISO BMFF and MPEG2-TS Support for ISO BMFF content is richer than MPEG2-TS

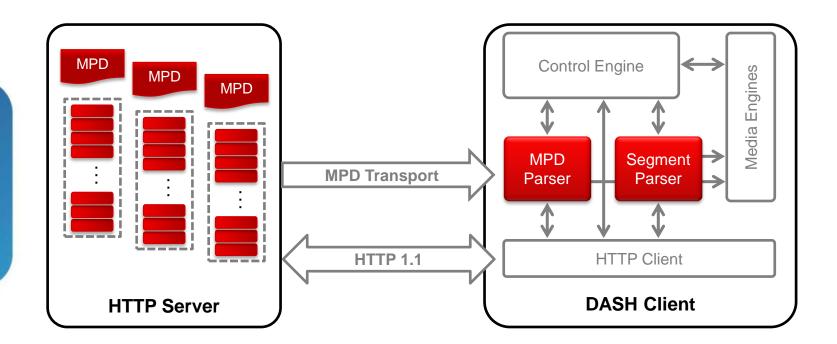
Is not a system, protocol or codec specification and does not specify

Size and duration of segments, number and bitrates of representations, frequency of RAPs

Download times of segments, switching between different representations

Transport of MPD

Supports


Live, on-demand and time-shifted content delivery and trick modes

Splicing and ad insertion, byte-range requests

Content descriptors for protection, accessibility and rating

Scope of MPEG DASH Shown in Red

Timeline in MPEG

Ongoing Work in MPEG DASH

ISO/IEC 23009 Parts

Part 1 Corrigenda and Amendments: Media Presentation Description and Segment Formats
 Part 2: Conformance and Reference Software
 Part 3: Implementation Guidelines
 Part 4: Format Independent Segment Encryption and Authentication
 Core Experiments

Generic transports and storage of DASH formats Signalling of quality-related information in DASH Low-latency live streaming Parameters insertion in URL DASH push events

Timeline in 3GPP SA4

 SA4 started its activity mid 2009 and completed specification work early March 2010 for Release 9

Integrated in Transparent End-to-end Packet-switched Streaming Service (PSS) TS 26.234 (Codecs and Protocols) TS 26.244 (3GPP File Format – 3GP)

SA4 has done bug fixing and maintenance for Release 10

Editorial corrections and clarifications

Alignment sought with other SDOs (MPEG and OIPF)

New separate spec for 3GP-DASH

TS 26.247 (PD and Dynamic Adaptive Streaming over HTTP – 3GP-DASH)

Release 10 was published in June 2011

Release 11 was published in September 2012

TS 26.247: 3GP-DASH

• TS 26.247

Describes (XML-based) media presentation description (MPD) file Defines segment types and formats Defines profiles for Releases 10 and 11 Provides metrics for QoE reporting Provides informative description for an adaptive streaming client

TS 26.247 does not talk about 3G/4G specific issues

3GP-DASH clients perform adaptation solely based on HTTP-layer (and TCP-layer, if any at all) observations

TS 26.247 is not concerned about content generation/distribution

No specific guidelines on content generation appropriate for wireless networks No discussion on distribution scalability issues over the last-mile wireless link

DASH Industry Forum http://dashif.org

Objectives

Promote and catalyse market adoption of MPEG DASH

Publish interoperability and deployment guidelines (DASH264 Base)

Facilitate interoperability tests

Collaborate with SDOs and industry consortia in aligning ongoing DASH standards development and the use of common profiles

DASH IF defines several interoperability points (IOP) regarding

MPEG DASH specific features Codecs including levels and profiles Subtitles and closed captioning DRM specific aspects Transport-layer specific aspects Metadata

DASH264 Base IOPs Overview

Profiles

Restricted version of ISO BMFF Live and On-demand profiles No playlist-based addressing

Encoding

Video: H.264/AVC MP@3.0

Audio: HE-AAC v2

No muxed audio/video

No open-GoP switching

Subtitles

SMPTE Timed Text

DRM Baseline

ISO/IEC 23001-7 Common Encryption

Links for Organisations and Specs

3GPP PSS and DASH

http://ftp.3gpp.org/specs/html-info/26234.htm http://ftp.3gpp.org/specs/html-info/26247.htm

MPEG DASH

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html Mailing List: http://lists.uni-klu.ac.at/mailman/listinfo/dash

DECE – UltraViolet

http://www.uvvu.com/

HbbTV (Hybrid Broadcast Broadband TV)

http://www.hbbtv.org/pages/about_hbbtv/specification.php

Digital TV Group (DTG)

http://www.dtg.org.uk/publications/books.html

W3C Web and TV Interest Group

http://www.w3.org/2011/webtv

Summary


Part I: IPTV

IPTV – Architecture, Protocols and SLAs Video Transport in the Core Networks Video Distribution in the Access Networks Improving Viewer Quality of Experience Part II: Internet Video and Adaptive Streaming Example Over-the-Top (OTT) Services Media Delivery over the Internet Adaptive Streaming over HTTP **Emerging Standards**

Q & A

Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2013 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site <u>www.ciscoliveaustralia.com/mobile</u>
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 8 March 12:00pm-2:00pm

Don't forget to activate your Cisco Live 365 account for access to all session material,

communities, and on-demand and live activities throughout the year. Log into your Cisco Live portal and click the "Enter Cisco Live 365" button.

www.ciscoliveaustralia.com/portal/login.ww

Further Reading and References

Further Reading and References IPTV Basics – Architecture, Protocols and SLAs

Articles

"Not all packets are equal, part I: streaming video coding and SLA requirements," IEEE Internet Computing, Jan./Feb. 2009

"Not all packets are equal, part II: the impact of network packet loss on video quality," IEEE Internet Computing, Mar./Apr. 2009

"Deploying diffserv in backbone networks for tight SLA control," IEEE Internet Computing, Jan./Feb., 2005

Special Issues

EURASIP Signal Processing: Image Communication (August 2011)

IEEE Network (March 2010)

IEEE Transactions on Broadcasting (June 2009)

IEEE Internet Computing (May/June 2009)

IEEE Communications Magazine (Multiple issues in 2008)

© 2013 Cisco and/or its affiliates. All rights reserved.

Further Reading and References Video Transport in the Core Networks

Articles

"Toward lossless video transport," IEEE Internet Computing, Nov./Dec. 2011 "Designing a reliable IPTV network," IEEE Internet Computing, May/June 2009

Standards

http://tools.ietf.org/html/rfc2475 http://tools.ietf.org/html/rfc2205 http://tools.ietf.org/html/rfc3209 http://tools.ietf.org/html/rfc4090

Further Reading and References Video Distribution in the Access Networks

Articles

"Error control for IPTV over xDSL networks," IEEE CCNC 2008

"IPTV service assurance," IEEE Communications Magazine, Sept. 2006

"DSL spectrum management standard," IEEE Communications Magazine, Nov. 2002

Standards and Specifications

"Asymmetric digital subscriber line (ADSL) transceivers," ITU-T Rec. G.992.1, 1999 http://www.dvb.org/technology/standards/index.xml#internet http://tools.ietf.org/html/rfc5760 http://tools.ietf.org/html/rfc5740 http://tools.ietf.org/html/rfc4588 http://tools.ietf.org/html/rfc4585 http://tools.ietf.org/html/rfc3550

Further Reading and References Improving Viewer Quality of Experience

Articles

"Scaling server-based channel-change acceleration to millions of IPTV subscribers," Packet Video Wksp. 2012

"Reducing channel-change times with the real-time transport protocol," IEEE Internet Computing, May/June 2009

"On the scalability of RTCP-based network tomography for IPTV services," IEEE CCNC 2010 "On the use of RTP for monitoring and fault isolation in IPTV," IEEE Network, Mar./Apr. 2010

Standards and Specifications

http://www.broadband-forum.org/technical/download/TR-126.pdf https://www.atis.org/docstore/product.aspx?id=22659

Open Source Implementation for VQE Clients

Documentation

http://www.cisco.com/en/US/docs/video/cds/cda/vqe/3_5/user/guide/ch1_over.html

FTP Access

ftp://ftpeng.cisco.com/ftp/vqec/

Further Reading and References Targeted Advertising

SCTE Standards

SCTE 30: Digital Program Insertion Splicing API SCTE 35: Digital Program Insertion Cueing Message for Cable SCTE 130: Digital Program Insertion – Advertising Systems Interfaces URL: http://www.scte.org/standards/Standards_Available.aspx

Further Reading and References Industry Tests

Light Reading: Cisco Put to the Video Test

http://www.lightreading.com/document.asp?doc_id=177692&site=cdn

EANTC Experience Provider Mega Test

http://www.cisco.com/en/US/solutions/ns341/eantc_megatest_results.html

IPTV & Digital Video QoE: Test & Measurement Update

http://www.heavyreading.com/insider/details.asp?sku_id=2382&skuitem_itemid=1181

Further Reading and References Adaptive Streaming

Articles

"Watching video over the Web, part 2: applications, standardisation, and open issues," IEEE Internet Computing, May/June 2011

"Watching video over the Web, part 1: streaming protocols," IEEE Internet Computing, Mar./Apr. 2011 "Mobile video delivery with HTTP," IEEE Communications Mag., Apr. 2011

Special Sessions in ACM MMSys 2011

Technical Program and slides: at http://www.mmsys.org/?q=node/43

VoDs of the sessions are available in ACM Digital Library

http://tinyurl.com/mmsys11-proc

(Requires ACM membership)

W3C Web and TV Workshops

http://www.w3.org/2011/09/webtv http://www.w3.org/2010/11/web-and-tv/

Further Reading and References Source Code

Microsoft Media Platform: Player Framework

http://smf.codeplex.com/

Adobe OSMF

http://sourceforge.net/adobe/osmf/home/Home/

OVP

http://openvideoplayer.sourceforge.net

LongTail Video JW Player

http://www.longtailvideo.com/jw-player/about/

Further Reading and References Demos

Akamai HD Network

http://wwwns.akamai.com/hdnetwork/demo/flash/default.html

http://wwwns.akamai.com/hdnetwork/demo/flash/hds/index.html

http://wwwns.akamai.com/hdnetwork/demo/flash/hdclient/index.html

http://bit.ly/testzeri

Also watch http://2010.max.adobe.com/online/2010/MAX137_1288195885796UHEZ

Microsoft Smooth Streaming

http://www.iis.net/media/experiencesmoothstreaming http://www.smoothhd.com/

Adobe OSMF

http://www.osmf.org/configurator/fmp/

http://osmf.org/dev/2.0gm/debug.html

Apple HTTP Live Streaming (Requires QuickTime X or iOS)

http://devimages.apple.com/iphone/samples/bipbopall.html

OVP

http://openvideoplayer.sourceforge.net/samples

Octoshape Infinite Edge

http://www.octoshape.com/showcase/overview/

