

What You Make Possible

Advances in IP+Optical and Multi-Layer Integration **BRKOPT-2661**

TOMORROW starts here.

Housekeeping

- We value your feedback don't forget to complete your online session evaluations after each session & complete the Overall Conference Evaluation which will be available online
- Please switch off our mobile phones
- Please make use of the recycling bins provided
- Please remember to wear your badge at all times

- Introduction to IP+Optical
- New ROADM Trends to support seamless integration
- Multi-layer Control Planes
- IP+Optical Architectures and Management
- Conclusion

Introduction to IP+Optical

Circuit to Packet Migration

- Massive change in SP traffic make-up in next 5 years*
- SP revenue shifting from circuits to packet services**
 - -5 yrs $\rightarrow -80\%$ revenue derived from packet services

 Packet traffic increasing at 34% CAGR*** (mobility, video and cloud) *ACG Research 2011, ** Cisco Research 2010, ***Cisco VNI 2011

BRKOPT-2661

© 2013 Cisco and/or its affiliates. All rights reserved.

Changing Traffic Patterns Drive Architecture Evolution No Longer North and South; now East and West

BRKOPT-2661

© 2013 Cisco and/or its affiliates. All rights reserved.

Cisco Public

How Technology Affects Economics Percent of CAPEX, cost per bit

- The higher data rate means more complexity in optics and higher optical cost
- The ratio of L3 and Optical cost is changing with the data rate

BRKOPT-2661

© 2013 Cisco and/or its affiliates. All rights reserved.

Cisco Public

IP+Optical Business Drivers

- Increase Service Velocity
- Collapse Layers reduce devices, space, power & OpEx
- Hybrid IP+TDM capabilities
 - Support legacy services
 - Migrate to single wavelength
- Eliminate interconnect optics cost

IP+Optical Business Drivers, Continued

- Flexibility of L3 and Optical results in the following benefits:
 - Reduce port numbers
 - Optical bypass opportunity
 - Greater flexibility for Layer 3 services
 - Additional network connectivity options, lower CAPEX
 - -All network changes driven by software
 - Increase average utilisation per link
 - Release underutilised connections

What does IP+Optical Mean?

Distinct aspects define a true added value IP+Optical solution

- Data Plane integration
- Control Plane Integration
 - Multilayer Control Plane
- Management Plane Integration

Standards Bodies and Organisations

Charter: Evolution of the Internet (IP) Architecture

Active Participants:

- Service Providers
- Vendors

Charter: Development of Optical Networking Products and Services

Member Organisations:

- PTTs, ISPs, ILECs, IXCs
- Optical Networking Vendors

Charter: Global Telecom Architecture and Standards

- **Member Organisations:** Global Service Providers
- PTTs, ILECs, IXCs
- Telecom equipment vendors
- Governments

Charter (802.3 working group): Define the physical layer and data link. layer's media access control (MAC) of wired Ethernet **Member Organisations:** Component Vendors Networking Vendors

Standards Drive Adoption

New ROADM Trends to Support Seamless Integration

What is a ROADM? A ROADM is a Wavelength Switch

Traditional OADM

Reconfigurable OADM

A fixed number of channels A fixed set of channels Physical Ring Only (2 Degree) Any number of channels (0 to 40/80) Any set of channels, directional Physical Ring (2D) or Mesh (Multi-Degree)

... because ROADM ports were coloured and directional.

Coloured Add/Drop Fixed port frequency assignment One unique frequency per port

Directional Add/Drop Physical add/drop port is tied to a ROADM "degree"

Due to these restrictions, a change in **direction** or **frequency** of an optical circuit required a physical change (move interface to different port) at the endpoints.

Colourless and Omni-directional Capabilities

Add Touchless flexibility, and hence Programmability, to ROADM networks

Colourless Add/Drop No port-frequency assignment Any frequency, any port

Omni-Directional Add/Drop Add/Drop ports can be routed to/from any ROADM degree

With **Colourless** plus **Omni-Directional**, the frequency and direction of the signal can be changed, without requiring a change of ROADM add/drop port, therefore no truck rolls.

But...Colourless and Omni-directional introduce wavelength contention at the add/drop stage. Need a Contentionless architecture.

Directional Add/Drop ROADMs are by definition Contentionless Contentionless allows multiple add/drop from one unit.

With **Contentionless**, N instances of a given wavelength (where N = the number of line degrees in the ROADM node) can be add/dropped from a single device, eliminating any restrictions on dynamic wavelength provisioning.

instances of the same frequency to

Tuneable lasers and coherent receivers are also key enablers of IP+Optical

Transmitter can tune its laser's frequency to any channel in the ITU grid.

Receiver can select any channel from of a composite (unfiltered) signal.

Tuneable lasers work with colourless add/drop to enable touchless changes in the frequency of an optical signal. Coherent receivers simplify the construction of colourless and omni-directional ROADM nodes.

Key Takeaways

- Colourless and tunable optics allow changing wavelength with no physical re-cabling
- Allow for any to any switching in the optical domain
- Allow for re-routing in the optical domain
- Omni-directional and tunability
- Use the C-band spectrum to its full capacity

These features open the door for a new agile DWDM control plane

Multilayer Control Planes

The Optical Layer – Current

Manual Patching

- Manual provisioning of each node
- Manual patching of each node
- High OpEx
- Truck rolls to every node

What Should an Optical Control Plane do?

Elements of an OCP

Resource Discovery

Topology Discovery

Traffic Provisioning

Traffic Restoration

Network Restoration

Increasing Complexity

BRKOPT-2661

© 2013 Cisco and/or its affiliates. All rights reserved.

Agile Control Plane Requirements

Requirements

Tunability

Colourless

Omni-Directional

Enabling Zero Touch End to End Solution

Impairmentaware

GMPLS Introduction

- Generalised control plane for different types of network devices
 - Packet-Switch Capable (PSC)
 - -Layer-2 Switch Capable (L2SC)
 - -Time-Division-Multiplex Capable (TDM)
 - Lambda-Switch Capable (LSC)
 - -Fibre-Switch Capable (FSC)
- Two major models: peer (NNI) and overlay (UNI)
- Different label formats depending on network type
 - We focus on LSC here

GMPLS Introduction (Cont'd)

- Based on initial RSVP-TE, OSPF-TE and ISIS-TE extensions
- Strict separation of control and forwarding planes
- Supports bi-directional LSPs
- IP based control plane (no LDP)
- No IP based forwarding plane

What is Wavelength Switched Optical **Network (WSON)?**

It is a GMPLS control plane which is "DWDM aware":

- LSP are wavelength and,
- the control plane is aware of optical impairments
- WSON enables lambda setup on the fly
- WSON enables lambda re-routing
- WSON enables a lambda revalidation against a failure reparation

Cisco WSON Parameters – Embedded Optical Layer Intelligence

Foundation for Multi-layer Information Exchange

Route choices (C-SPF)

Automating the Optical Layer with WSON

Dynamic Service Activation with Colourless, Omnidirectionality and **GMPLS**

- •Auto provisioning wavelength on demand via GMPLS
- Auto restoration via ROADMs and WXC
- Lower OpEx even further
- No truck rolls

WSON Restoration

Embedded WSON intelligence locates and verifies a new path

BRKOPT-2661

Cisco Public

Restoration is Slower than Protection

- If rapid failure detection and recovery is needed it is assumed that existing packet IP/ MPLS mechanisms (e.g., BFD, IP-FRR, TE-FRR, LDP-FRR, mLDP-FRR, fast convergence) will be used for protection and recovery.
- IP+Optical Solutions can use Proactive Protection
- Protected services (Y-cable, PSM, FibreSwitch) should be used for valuable traffic to provide rapid protection at the optical layer.
- Restoration is Best Effort.

What if we Integrate IP Control Plane with WSON?

- Reduce Optical Circuit Turn Up Time
- On Demand Bandwidth Provisioning
- Constrained Circuit Request to Avoid Shared Risk
- Alarm Correlation
- Network Optimisation

Multi Layer Control Plane Two key models

Peer Model – Optical NEs and Routing NEs are one from the control plane perspective, same IGP.

- Does not respect operational boundaries; does not scale

Overlay Model – Having different Control Planes per Layer and signalling between them

- Respects Boundaries and Scales

GMPLS – User Network Interface

- User-Network Interface (UNI) to implement an overlay model between two networks – with limited communication between them
- Enables a Cisco router to signal paths dynamically through a DWDM network
- Paths may be signaled with diversity requirements
- Two UNI components
 - -Client: UNI-C
 - Network: UNI-N

Building block for multi-layer routing

* Formerly known as iOverlay

Link Management Protocol (LMP)

- Performs two core functions
 - -Control channel management
 - -Link property correlation
- Runs over UDP with mechanisms for reliable message transmission
- Includes mechanisms for LMP neighbour discovery
- Most messages exchanged over control channel
- Can also provide link connectivity verification and fault management

RSVP

- Client Requests connections from optical network using **GMPLS RSVP-TE Extensions**
- RSVP signalling is identical to GMPLS extensions specified in RFC 3473 except where noted in RFC 4208.

GMPLS UNI - IP Control Channel

GMPLS UNI – Reference Model (IP+Optical)

UNI honors administrative boundaries while allowing controlled interaction

BRKOPT-2661

© 2013 Cisco and/or its affiliates. All rights reserved.

Control plane

Forwarding plane

Path Computation and Signalling (no ERO)

- UNI-C (Head)
 - Initiates signalling (default lambda)
 - No explicit path (ERO) defined / signaled
 - Signalling initiated towards remote UNI-C (optical loopback or optical) link address)
 - Bi-directional path (upstream and downstream labels)
- UNI-N
 - Arrival of PATH message without ERO triggers path computation to destination across optical domain
 - PATH calculations performed at the UNI-N head
 - Establishment of optical path (trail) required for UNI signalling to proceed

Signalling –Path Setup

Generalised Label for Lambda-Switch-Capable (LSC) Label Switching Routers

Grid	Channel Spacing	Identifier	
— 3 bits —	4 bits	9 bits	

Grid – Optical grid as defined in ITU-T G.694.1 Channel Spacing – Spacing between DWDM channels in GHz Identifier - Per-node distinguisher between lasers than can transmit same lambda **n** – value used to compute frequency (two's complement)

Grid	Value	DWDM Channel Spacing (GHz)	Value	Frequency (T
Reserved	0	Reserved	0	
ITU-T DWDM	1	100	1	
ITU-T CWDM	2	50	2	
Future Use	3 - 7	25	3	
		12.5	4	
		Future Use	5 - 15	

Hz) = 193.1 THz + n * channel spacing (THz)

GMPLS-UNI Example Setup

Node	L3/Packet ID	Optical Router ID	L3/Packet Link Address	Optical I/F Address
Head UNI-C	1.1.1.1	10.58.46.1	10.0.0.1	100.11.11.11
Ingress UNI-N	n/a	10.58.46.2	n/a	100.12.12.12
Egress UNI-N	n/a	10.58.47.2	n/a	100.19.19.19
Tail UNI-C	2.2.2.2	10.58.47.1	10.0.2	100.20.20.20

BRKOPT-2661

© 2013 Cisco and/or its affiliates. All rights reserved.

Sample Base GMPLS UNI Config – Head

LMP Properties

Optical I/F of LMP Neighbour

UNI-C Optical link address

Control Channel

Optical Router ID

Imp

gmpls optical-uni

controller dwdm0/2/0/0

neighbor nbr_A

- neighbor link-id ipv4 unicast 100.12.12.12 neighbor interface-id unnumbered 13
- link-id ipv4 unicast 100.11.11.11

neighbor nbr_A

ipcc routed

router-id ipv4 unicast 10.58.46.2

router-id ipv4 unicast 10.58.46.1

Sample Base GMPLS UNI Config – Head (Cont'd) **RSVP** Refresh rsvp interface HundredGigE0/2/0/0 signalling refresh optical interval 3600 signalling refresh optical missed mpls traffic-eng interface HundredGigE0/2/0/0 **GMPLS** Tunnel Configuration gmpls optical-uni controller dwdm0/2/0/0 tunnel-id 1

- destination ipv4 unicast 100.20.20.20 path-option 10 no-ero lockdown

Sample Base GMPLS UNI Config- Tail

neighbor link-id ipv4 unicast

neighbor interface-id unnumbered 13 link-id ipv4 unicast 100.20.20.20

router-id ipv4 unicast 10.58.47.2

router-id ipv4 unicast 10.58.47.1

Sample Base GMPLS UNI Config- Tail (Cont'd)

Provisioning using GMPLS UNI Example Circuit Request

Router requests a circuit between Source and Destination Routers Interfaces 1.

Provisioning using GMPLS UNI Example Circuit Request

Router requests a circuit between Source and Destination Routers Interfaces 2. Using GMPLS UNI I/F Router signals UNI-N system requesting path to destination

UNI-C

Router requests a circuit between Source and Destination Routers Interfaces Using GMPLS UNI I/F Router signals UNI-N system requesting path to destination 3. UNI-N initiates DWDM CP (WSON) and finds best path based on Diversity contraints

- Router requests a circuit between Source and Destination Routers Interfaces
- Using GMPLS UNI I/F Router signals UNI-N system requesting path to destination
- 3. UNI-N initiates DWDM CP (WSON) and finds best path based on Diversity constraints
- 4. Destination UNI-N Node signals Destination router and requests IPoDWDM interface to be set to specific wavelength

- 1. Router requests a circuit between Source and Destination Routers Interfaces
- 2. Using GMPLS UNI I/F Router signals UNI-N system requesting path to destination
- 3. UNI-N initiates DWDM CP (WSON) and finds best path based on Diversity constraints
- 4. Destination UNI-N Node signals Destination router and requests IPoDWDM interface to be set to specific wavelength
- 5. Head End UNI-N signals Head End router to set IPoDWDM interface to specific wavelength

- 1. Router requests a circuit between Source and Destination Routers Interfaces
- 2. Using GMPLS UNI I/F Router signals UNI-N system requesting path to destination
- 3. UNI-N initiates DWDM CP (WSON) and finds best path based on Diversity constraints
- 4. Destination UNI-N Node signals Destination router and requests IPoDWDM interface to be set to specific wavelength
- 5. Head End UNI-N signals Head End router to set IPoDWDM interface to specific wavelength
- 6. Path is up and interfaces are ALLOCATED

Layer Interaction – Provisioning

Dramatically Increase Circuit Turn-up Velocity

- -Yesterday \rightarrow Months
 - L3 team requests circuit of L0 team, with specific criteria
 - L0 team verifies available path, matching request criteria
 - L0 team verifies performance and resources
 - L0 / L3 teams coordinate circuit turn-up
- -Today GMPLS \rightarrow Minutes

Client signals circuit request along with criteria

- L0 signals wavelength to use or path error message
- Circuit is turned up

GMPLS

BRKOPT-2661

Inefficiencies in Layer 2/3 Network

Impacts SLA

- downtime, latency, loss, predictability of service

Impacts bottom-line

 SLA penalty, unoptimised capacity, support complexity

© 2013 Cisco and/or its affiliates. All rights reserved.

Basis for nLight Control Plane

- The solution to these problems are simple
- If the client layer knows basic information from the server layer: SRLG, latency...
- To-date, this information is invisible to the client layer
- We need to allow for information sharing between Client and Server

Multi Layer Control Plane Two key models

Peer Model – Optical NEs and Routing NEs are one from the control plane perspective, same IGP.

- Does not respect operational boundaries; does not scale

Overlay Model – Having different Control Planes per Layer and signalling between them

- Respects Boundaries and Scales

nLight Architecture

Overlay client uses service from Server layer (i.e. IP/MPLS)

Two independent layers decoupled

Benefits of IGP Decoupling

- The IGP's of each layer are de-coupled
 - L3 network runs multi-level ISIS
 - ROADM network runs OSPF
- Divide et Impera Benefits
 - Scale
 - Operational expertise
 - Organisational segmentation

Multilayer Control Plane - nLight

- GMPLS UNI extension to include SRLG and Coordinated maintenance functionality
- GMPLS UNI extension to support next generation of Multi-rate/Multi-Modulation/Multicarrier HS Optics
- Automatic Bandwidth service from MPLS CP and WSON CP will be the end goal to deploy a true Multi-Layer Network
- Integration of an L1/L3 awareness in a Network Planner Prime module

Information Flowing through nLight with **GMPLS UNI**

- When signalling a circuit, a client may request
 - server SRLG's to be excluded or included
 - the path to follow another Circuit-ID
 - the path to be disjoint from another Circuit-ID
 - an optimisation upon shortest latency
 - a bound on latency not to exceed
 - an optimisation upon lowest optical cost
 - optical restoration
 - optical re-optimisation

Information Flowing through nLight **GMPLS UNI**

- For each circuit it signals, a client may be informed of
 - Circuit-ID unique identifier in server context
 - **SRLG**'s along the circuit
 - Latency through the server network
 - Path through the server network

Information continuously refreshed

A client may be informed of server topology/resource

Agile IP layer

CircuitID, SRLG, Latency...

Agile DWDM layer

Policy Controlled by the Server Layer

nLight Resolves the Inefficiencies

- Efficient IP/MPLS FRR
 - thanks to SRLG discovery
- Enforcement of disjointess or same-path requirements
 - thanks to SRLG/Circuit-ID disjointness
- Efficient diagnostics
 - latency discovery
- Efficient operation
 - multi-layer maintenance coordination

Intelligent Information Exchange **Proactive Protection, GMPLS, Control Plane**

OSNR

CD / PMD power levels non-linear impairments physical topology

Network Topology & Feas

IP+Optical Architectures and Management

The Traditional Approach

- Split Management: Router NE management + Transport NE management
- i.e. WDM Power levels, OTN overhead, and alarms not available on the router
- No topology or performance information sharing between device types

Transponder in Router

- Transponder integrated in the router
- Manage via CLI, SNMP or EMS system of DWDM transport
- Power levels, OTN overhead, PM, and alarms available in real-time on the router

ROADM Shelf

Transponder in Router Proactive Protection

Virtual Transponder

Transponder Virtualised onto the Router Interface

- Retains existing operational model
- Respects boundaries between packet / optical administrative groups

Security

DWDM Management

 L1 Interface Information • Wavelength Usage Power Levels and Thresholds Performance Monitoring

Virtual Transponder General View

Virtual Transponder View Router G709 and optical characteristics

Open Node rcdn5-tme28 Reset Node Position Synchronize Alarms Delete Node Site Rack #0 Show Router Port Status > 0/0/0/0 0/1/0/0 Synchronize IPoDWDM R Show Active Alarms rcdn5-tme28-crs-2.cisco.com Provision Circuit To Update Circuits With New Node Raman Installation Day0 Multi-Span Add to Perspective

Virtual Transponder Setting up OCHTrail

	1	8
h re-routing		
rcuit Param	< _>	<
CMDLS/WSONL Circuit Parameters	•	
GMPLS/WSON CIrcuit Parameters	~	
Name:		
Type:	OCHNC -	
Bidirectional		
OCHNC Wavelength		
Validation:	FULL -	
Acceptance threshold:	GREEN -	
Ignore path Alarms		
	HELP	
GMPLS/WSON Restoration Configuration	\$	
Restoration Options-		
Restoration		
	Help	
Create Circuit		
	<pre></pre>	,
	Cisco	
	CISCO	

Optical Shelf Concept Solving the Moore vs. Shannon dilemma

- Realise benefits from combining Optics + Processing...when it makes sense. But for the future...
- Decouple Optics from Processing
 - Space / Size
 - Lifecycle
- Zero Cost interconnect
- Value add functionality (take advantage of OEO)
 - Pack waves efficiently
- Maintain unified management

IP+Optical: Satellite Router Interface Virtualised onto the Transponder

Transponder Shelf Router PLIM TSP

- Transponder becomes an extension of the router
- Power levels, OTN overhead, and alarms available in real-time on the router
- DWDM interface controlled and monitored by router CLI or OTN MIB
- Control Plane Interaction

ROADM Shelf

DWDM LO Transport

IP+Optical Satellite Proactive Protection

© 2013 Cisco and/or its affiliates. All rights reserved.

IP+Optical Network Management

- A modular suite of applications
- A-to-Z

management for next-generation packet and transport networks

 Designed for lower **Total Cost of Ownership**

Crucial to the usability of the NGN, control plane alone is not enough...

Summary

- Packet traffic increasing
- IP+Optical decreases expenses while streamlining services
- New ROADM trends to support optical agile networks enabling multilayer control planes
- Multilayer control planes add network automation and resiliency as well as decrease TCO
- New architectures enable next generation networks

Q & A

Acronyms

C-SPF	Constrained Shortest Path First
CD	Chromatic Dispersion
CP- DQPSK	Coherent Polarisation-Mux Differential Quadrature Phase Shift Keying
DSP	Digital Signal Processing
DWDM	Dense Wave Division Multiplexing
ELEAF	E-Large Effective Area Fibre
FEC	Forward Error Correction
FRR	Fast Re-Route
FWM	Four Wave Mixing
GMPLS	Generalised Multi Protocol Label Switching
IETF	Internet Engineeing Task Force
ITU	International Telecommunications Union
LFA	Loop Free Alternate
LSP	Labeled Switch Path
NNI	Network-Network Interface
OCP	Optical Control Plane

OIF	Optical Internetwo	
OSNR	Optical Signal to N	
ΟΤΝ	Optical Transport	
PMD	Polarisation Mode	
QAM	Quadrature Ampli	
ROADM	Reprogrammable	
SLA	Service Level Agr	
SMF	Single Mode Fibre	
SRLG	Shared Risk Link	
TDM	Time Division Mul	
TE	Traffic Engineerin	
UNI	User-Network Inte	
WSON	Wavelength Switc	
WXC	Wavelength Cross	
ХРМ	Cross Phase Mod	
YoY	Year over Year	

rking Forum
loise Ratio
Network
Dispersion
ude Modulation
Optical Add/Drop Multiplexer
ement
Groups
iplexed
)
rface
ned Optical Network
Connect
ulation

Final Thoughts

- Come see demos of many key solutions and products in the main Cisco booth 2924
- Visit <u>www.ciscoLive365.com</u> after the event for updated PDFs, on-demand session videos, networking, and more!
- Follow Cisco Live! using social media:
 - Facebook: https://www.facebook.com/ciscoliveus
 - Twitter: https://twitter.com/#!/CiscoLive
 - LinkedIn Group: <u>http://linkd.in/CiscoLI</u>

Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2013 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the **Cisco Live Mobile App**
- By visiting the Cisco Live Mobile Site www.ciscoliveaustralia.com/mobile
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 8 March 12:00pm-2:00pm

communities, and on-demand and live activities throughout the year. Log into your Cisco Live portal and click the "Enter Cisco Live 365" button. www.ciscoliveaustralia.com/portal/login.ww

Don't forget to activate your Cisco Live 365 account for access to all session material,

CISCO

© 2013 Cisco and/or its affiliates. All rights reserved.

