

## What You Make Possible







# Understanding IPv6

BRKRST-1069



## **Agenda Overview**

Why IPv6 – Why we are jumping?

What is IPv6 – What does jumping look/feel like?

How does IPv6 work – How I didn't crash?

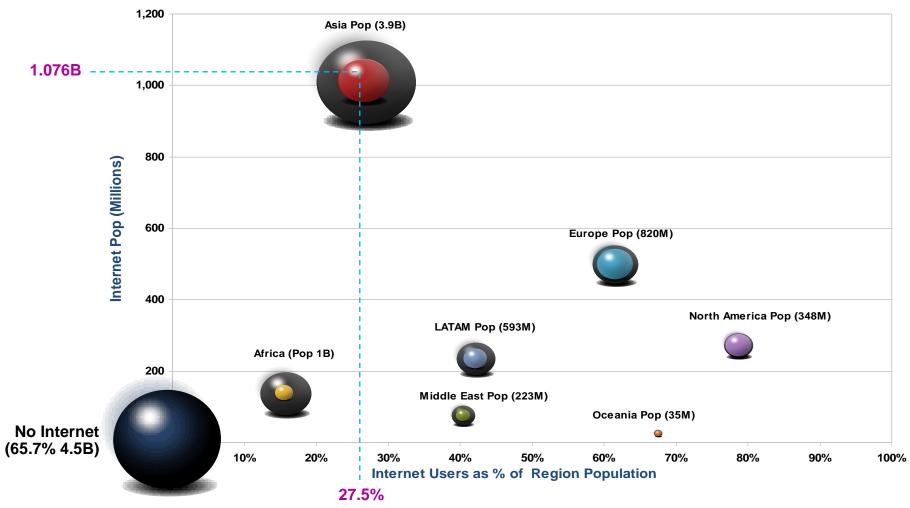




# Why IPv6



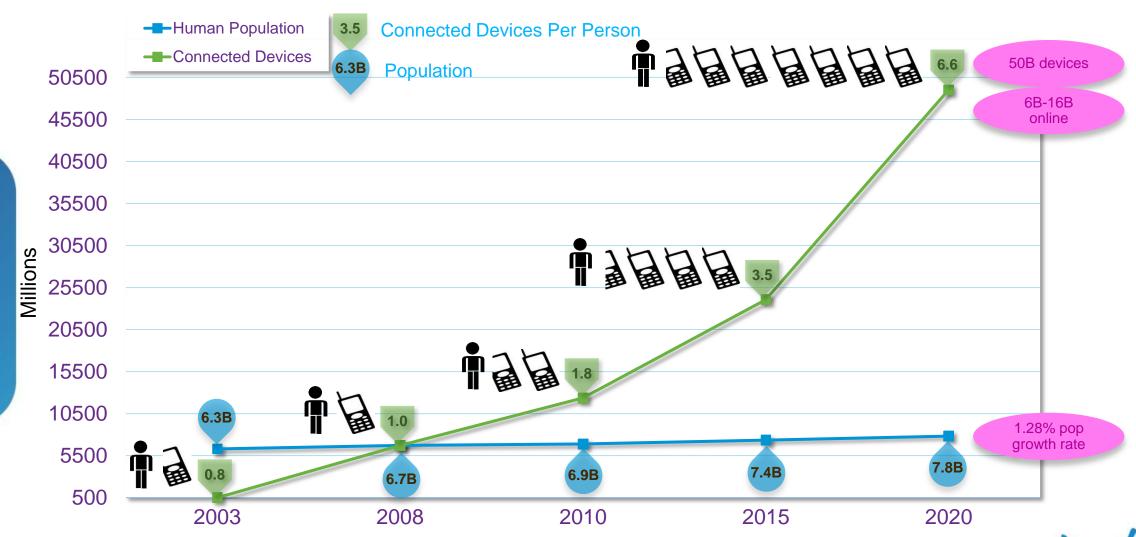
#### You Have Heard it all Before


IANA and the RIRs have run out of IPv4 address

- Consumers are generally ambivalent
  - Do not/should not care whether IPv4 or IPv6 content delivery

- IPv4 address trading markets starting to appear
  - Growth, fragmentation, and identity verification of the IPv4 routing table is inevitable




## Internet Usage by World Region



Source: http://www.internetworldstats.com/stats.htm June 2012



## Internet Usage by World Region



Cisco IBSG projections, UN Economic & Social Affairs http://www.un.org/esa/population/publications/longrange2/WorldPop2300final.pdf



# What is IPv6



## **Some IPv6 Myths**

IPv6 is more secure

IPv6 is faster

IPv6 is complicated

I don't need to plan for IPv6



#### What is IPv6

- 128bit addressing scheme
  - Hexadecimal representation
  - CIDR masking
- Introduces new protocol level behaviours
  - Neighbour Discovery
  - Stateless Addressing
  - No more Broadcast, only Multicast



#### So How Big Is The IPv6 Address Space?

340,282,366,920,938,463,463,374,607,432,768,211,456

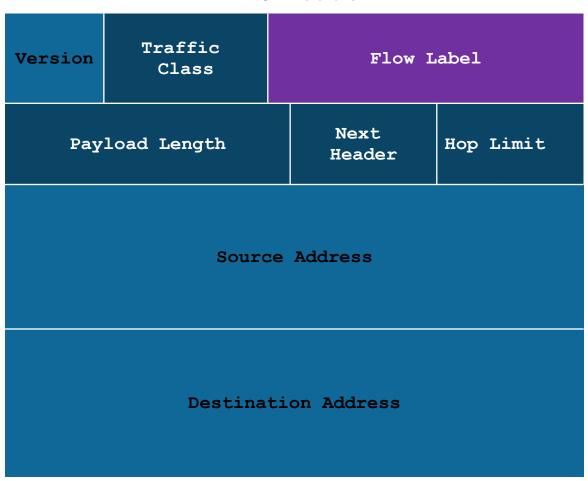
(IPv6 Address Space - 340 Trillion Trillion Trillion)

VS

4,294,967,296

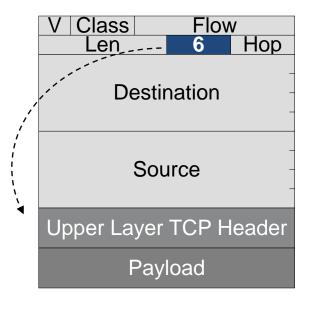
(IPv4 Address Space - 4 Billion)

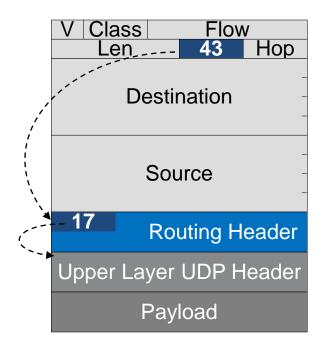


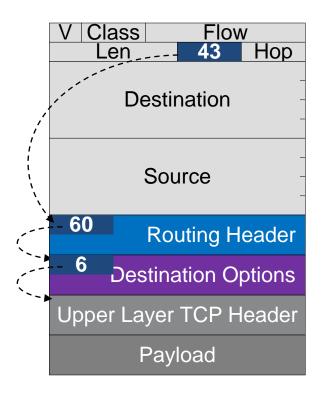

#### IPv4 and IPv6 Header Comparison

#### **IPv4** Header

| Version             | IHL  | Type of<br>Service | Total Length    |                    |
|---------------------|------|--------------------|-----------------|--------------------|
| Identification      |      |                    | Flags           | Fragment<br>Offset |
| Time to             | Live | Protocol           | Header Checksum |                    |
| Source Address      |      |                    |                 |                    |
| Destination Address |      |                    |                 |                    |
| Options             |      |                    |                 | Padding            |


# Field's Name Kept from IPv4 to IPv6 Fields Not Kept in IPv6 Name and Position Changed in IPv6 New Field in IPv6

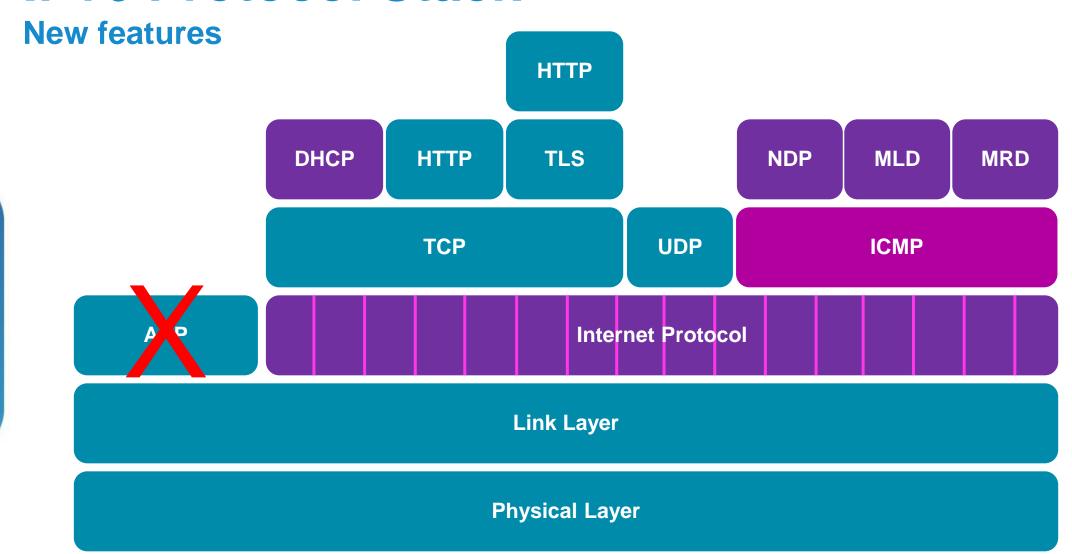

#### **IPv6** Header






#### **Extension Headers**








- Extension Headers Are Daisy Chained
- Order is important!



#### **IPv6 Protocol Stack**

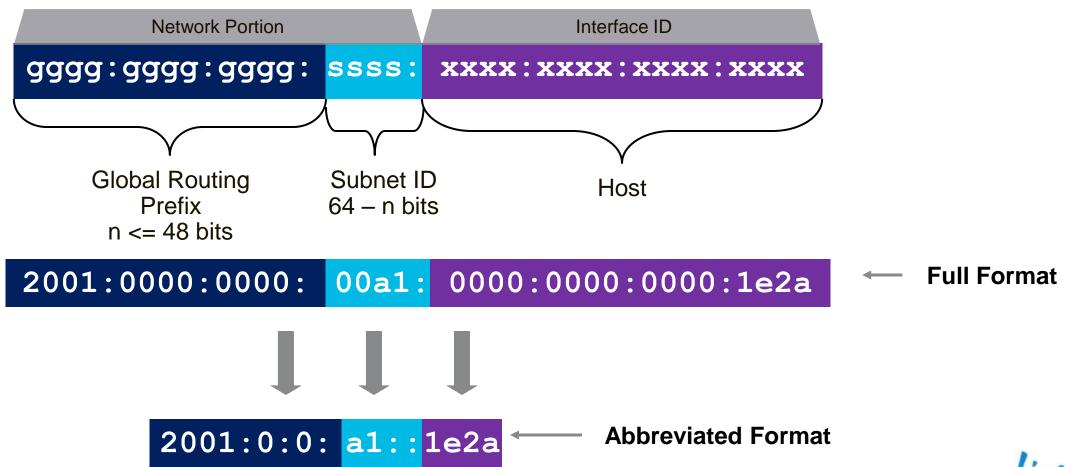




## IPv4/IPv6 Technology Comparison

| Service            | IPv4                                          | IPv6                                             |
|--------------------|-----------------------------------------------|--------------------------------------------------|
| Addressing Range   | 32-bit, NAT                                   | 128-bit, Multiple Scopes                         |
| IP Provisioning    | Manual, DHCP                                  | Manual, SLAAC, DHCP (and renumbering capability) |
| Security           | IPSec                                         | IPSec                                            |
| Mobility           | Mobile IP                                     | Mobile IP with Direct Routing                    |
| Quality-of-Service | Differentiated Service,<br>Integrated Service | Differentiated Service,<br>Integrated Service    |
| Multicast          | IGMP/PIM/MBGP                                 | MLD/PIM/MBGP, Scope<br>Identifier                |




# IPv6 Addressing

- The First Half



#### **IPv6 Addresses**

#### **Global Unicast Identifier Example**





#### **IPv6 Address Syntax**

Hex numbers are not case sensitive

```
2001:0dB8:0000:130f:0000:0000:087c:AaAa
```

Abbreviations are possible

```
2001:0db8:0000:130f::87c:aaaa
```

- Zeros in contiguous blocks can be represented by (::)
- Double colon can only appear once in the address
- Only leading zeros can be omitted

```
2001:db8:0:130f:0:0:087c:aaaa
```



#### **IPv6 Address Syntax**

IPv6 uses CIDR representation

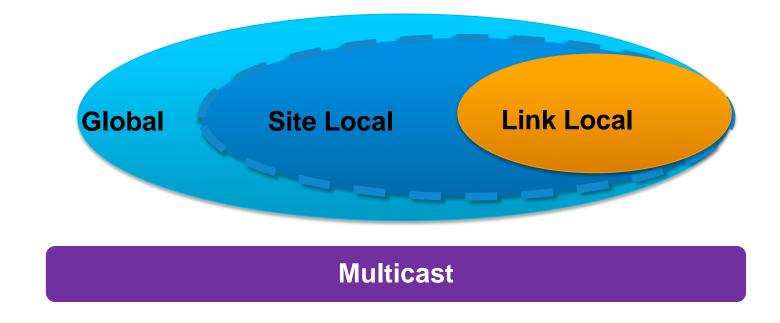
```
2001:0db8:0000:130f:0000:0000:087c:aaaa/128
```

Loopback address representation

```
0:0:0:0:0:0:0:1 == ::1
```

- Same as 127.0.0.1 in IPv4, it identifies self
- Unspecified address representation

```
0:0:0:0:0:0:0:0 == ::
```


- Initial DHCP request, Duplicate Address Detection DAD
- Default Route representation

::/0



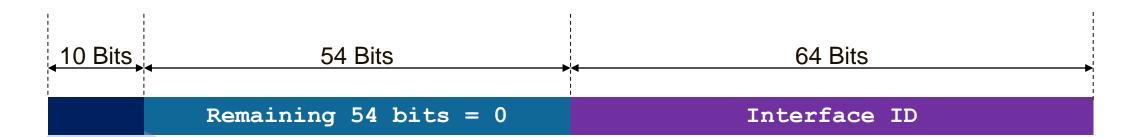
#### **IPv6 Address Scopes**

- Addresses are assigned to interfaces
- An IPv6 interface is "expected" to have multiple addresses and multiple scopes





#### **IPv6 Address Types**


- Three types of unicast addresses
  - Link-Local Non routable exists on single layer 2 domain
     (FE80::/64)

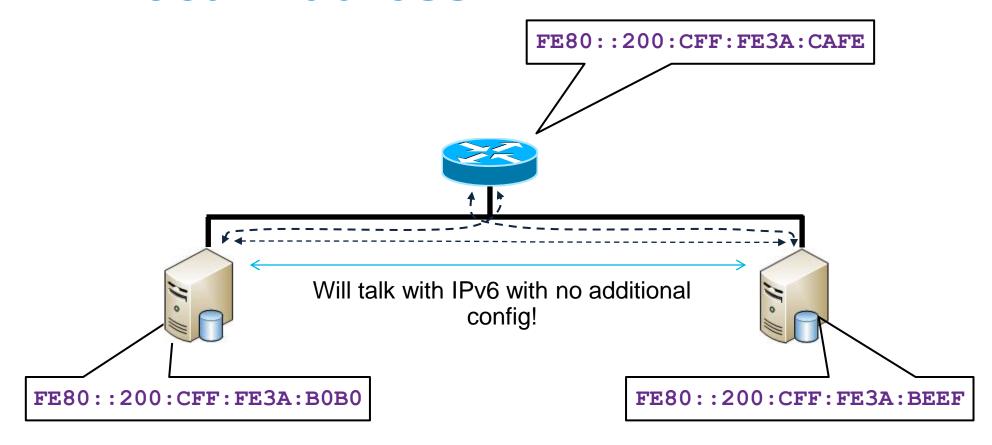
- Unique-Local Routable within administrative domain
   (FC00::/7)
- Global Routable across the Internet (2000::/3)

Multicast addresses (FF00::/8)
 Flags (z) in 3<sup>rd</sup> nibble (4 bits) Scope (s) into 4<sup>th</sup> nibble



#### **Link Local Address**

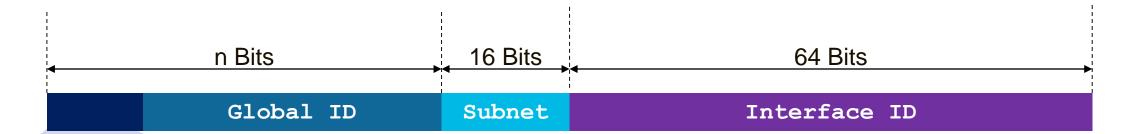



1111 1110 10

FE80::/10

- Mandatory
- Automatically self assigned by the device using EUI-64
- Only link specific scope



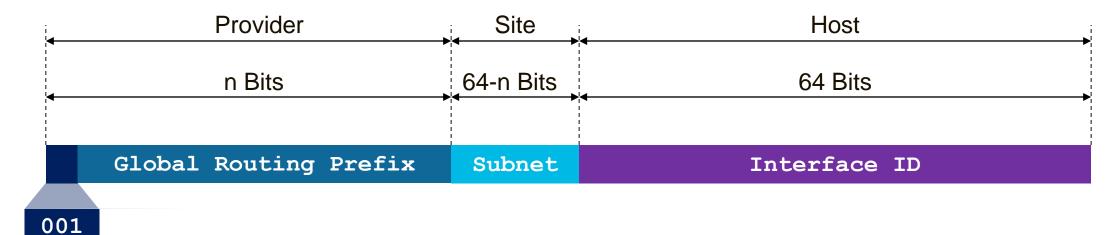

#### **Link Local Address**



Beware, you may already be running IPv6 and not know it!



#### **Unique Local Address (RFC 4193)**




1111 110L FC00::/7

- FC00::/8 is Registry Assigned (L bit = 0), FD00::/8 is self generated (L bit = 1)
  - Registries not yet assigning ULA space
- Global ID can be generated using an algorithm
  - Low order 40 bits result of SHA-1 Digest {EUI-64 && Time}
- Not considered best practice

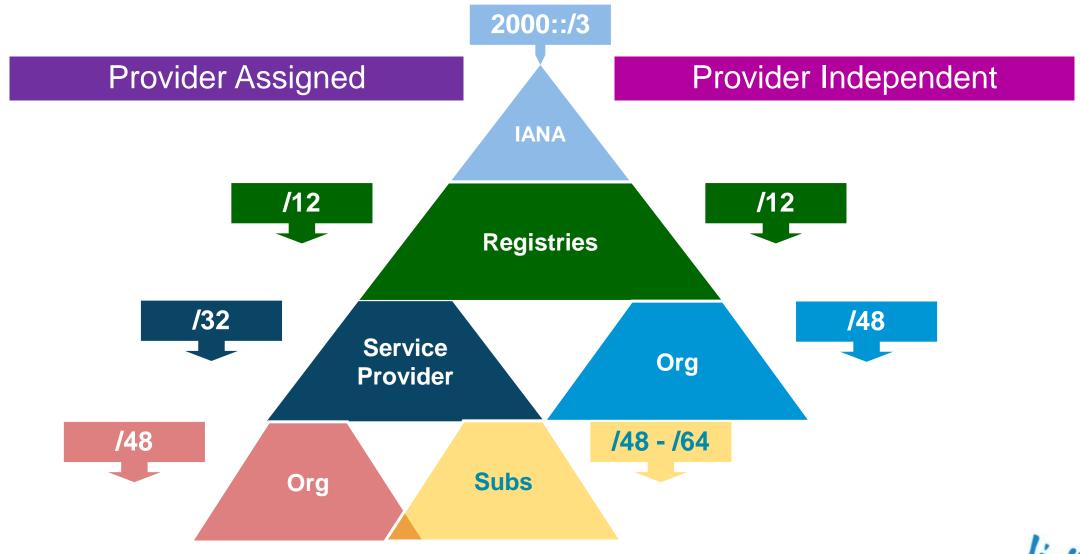


#### **Global Unicast Addresses**



- Globally routable
  - Requires correct border security!!
- Considered best practice for all device numbering
- Common allocation sizes are /32, /48, /52, /56, /64




#### **Interface Address Set**

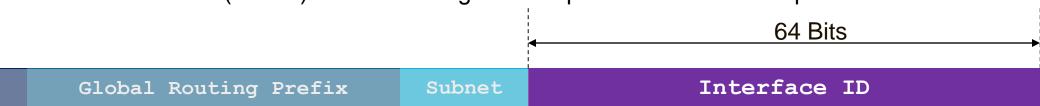
An interface can have many addresses allocated to it

| Address Type             | Requirement | Comment                                           |
|--------------------------|-------------|---------------------------------------------------|
| Link Local               | Required    | Required on all interfaces                        |
| Unique Local             | Optional    | Valid only within an Administrative Domain        |
| Global Unicast           | Optional    | Globally routed prefix                            |
| Auto-Config 6to4         | Optional    | Used for 2002:: 6to4 tunnelling                   |
| Solicited Node Multicast | Required    | Neighbour Discovery and Duplicate Detection (DAD) |
| All Nodes Multicast      | Required    | For ICMPv6 messages                               |



#### PI and PA Allocation Theory



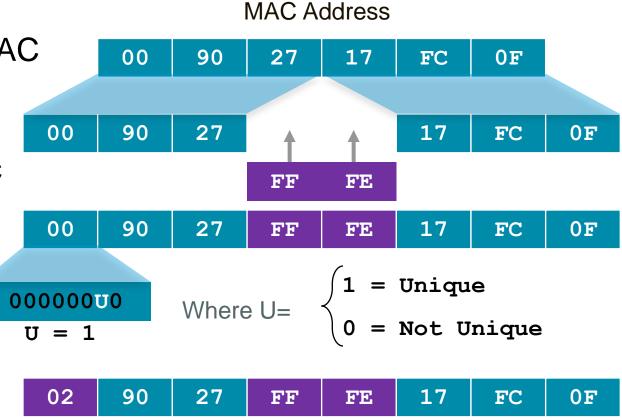

# IPv6 Addressing

- The Interface ID



#### **Address Interface ID**

- Interface ID of unicast address may be assigned in different ways
  - Auto-configured from a 64-bit EUI-64 or expanded from a 48-bit MAC
  - Auto-generated pseudo-random number (to address privacy concerns)
  - Assigned via DHCP
  - Manually configured
- EUI-64 format to do stateless auto-configuration
  - Expands the 48 bit MAC address to 64 bits by inserting FFFE into the middle
  - The universal/local ("u" bit) is set to 1 for global scope and 0 for local scope






#### IPv6 Interface Identifier (EUI-64 format)

 This format expands the 48 bit MAC address to 64 bits by inserting FFFE into the middle 16 bits

- Non-ethernet interfaces use the first MAC address in the pool on the router
- Cisco devices 'bit-flip' the 7th bit





#### Randomised IID and Privacy Extensions

- Enabled by default on Microsoft Windows
- Enable/disable via GPO or CLI

netsh interface ipv6 set global randomizeidentifiers=disabled store=persistent netsh interface ipv6 set privacy state=disabled store=persistent

- Alternatively, use DHCP to a specific pool
- Randomised address are generated for non-temporary autoconfigured addresses including public and link-local
- Randomised addresses engage Optimistic DAD



#### Link Level—Prefix Length Considerations

#### 64 bits

- Recommended by RFC3177 and IAB/IESG
- Consistency makes management easy
- MUST for SLAAC (MSFT DHCPv6 also)
- Significant address space loss (18.466 Quintillion)

#### > 64 bits

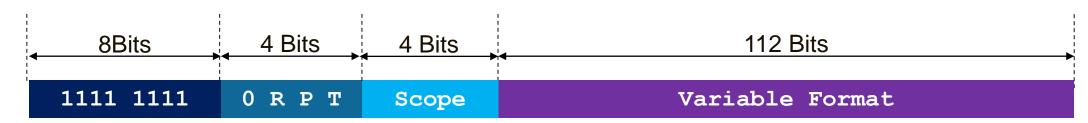
- Address space conservation
- Special cases:
   /126—valid for p2p
   /127—valid for p2p if you are careful RFC6164 (RFC3627)
   /128—loopback
- Must avoid overlap with specific addresses:
   Router Anycast (RFC3513)
   Embedded RP (RFC3956)
   ISATAP addresses

- /64 everywhere
- /64 + /126
  - 64 on host networks
  - 126 on point to point\*\*
- /64 + /127
  - 64 on host networks
  - 127 on point to point\*\*
- /128 on loopback
  - Sequential from same block



<sup>\*\*</sup> Allocate a /64, mask to a required mask e.g. /127




# The Role of Multicast



#### IPv6 Multicast Address (RFC 4291)

An IPv6 multicast address has the prefix FF00::/8 (1111 1111)

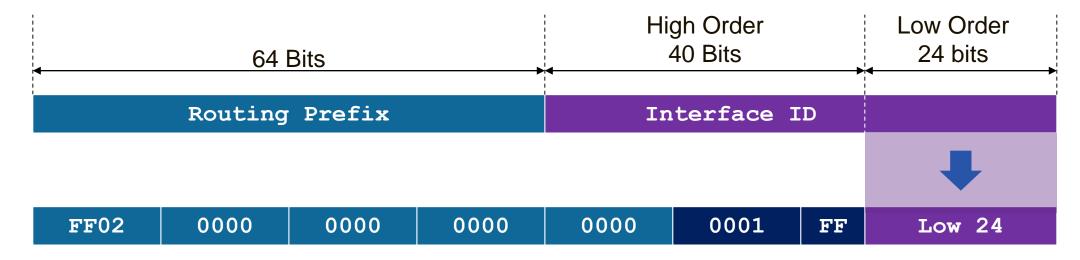
Second octet defines lifetime and scope



| Flags          |                                                                      |
|----------------|----------------------------------------------------------------------|
| R = 0<br>R = 1 | No embedded RP<br>Embedded RP                                        |
| P = 0<br>P = 1 | Not based on unicast Based on unicast                                |
| T = 0 $T = 1$  | Permanent address (IANA assigned) Temporary address (local assigned) |

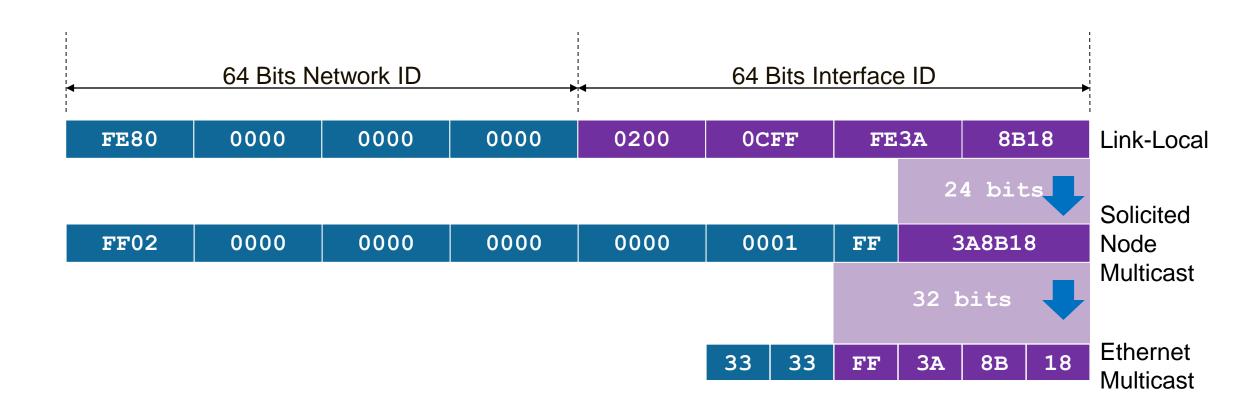
| Scope |              |
|-------|--------------|
| 1     | Node         |
| 2     | Link         |
| 3     | Subnet       |
| 4     | Admin        |
| 5     | Site         |
| 8     | Organisation |
| E     | Global       |

#### Well Known Multicast Addresses


| Address           | Scope      | Meaning           |
|-------------------|------------|-------------------|
| FF01::1           | Node-Local | All Nodes         |
| FF01::2           | Node-Local | All Routers       |
| FF02::1           | Link-Local | All Nodes         |
| FF02::2           | Link-Local | All Routers       |
| FF02::5           | Link-Local | OSPFv3 Routers    |
| FF02::6           | Link-Local | OSPFv3 DR Routers |
| FF02::1:FFXX:XXXX | Link-Local | Solicited-Node    |

- "02" means that this is a permanent address (t = 0) and has
   'Link' scope (2)
  - http://www.iana.org/assignments/ipv6-multicast-addresses




#### Solicited-Node Multicast Address

- For each Unicast and Anycast address
- Used in neighbour solicitation (NS) messages
- FF02::1:FF & {lower 24 bits from IPv6 Unicast interface ID}





## Solicited Node Multicast Address Example





## **IPv6 Interface Example**

show ipv6 interface e0 Ethernet0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::200:CFF:FE3A:8B18 No global unicast address is configured Joined group address(es): All Nodes FF02"1 **All Routers** FF02::2 Solicited Node Multicast Address FF02::1:FF3A:8B18 MTU is 1500 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled ND DAD is enabled, number of DAD attempts: 1 ND reachable time is 30000 milliseconds ND advertised reachable time is 0 milliseconds ND advertised retransmit interval is 0 milliseconds ND router advertisements are sent every 200 seconds ND router advertisements live for 1800 seconds Hosts use stateless autoconfig for addresses.

Ciscolive!

Link-local address (FE80::)

## IPv6 Interface Configurations



# Link-Local Configured Interface Identifier Address (IOS)



ipv6 unicast-routing
!
interface FastEthernet0/0
ip address 10.151.1.1 255.255.255.0
duplex auto
speed auto
ipv6 enable

Enable IPv6 on interface and automatically create link-local address

## **IPv6 Interface with Link-Local Address**

r1#show ipv6 interface fast0/0 FastEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::207:50FF:FE5E:9460 Global unicast address(es): None Joined group address(es): FF02::1 FF02::2 FF02::1:FF5E:9460 O MTU is 1500 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled Hosts use stateless autoconfig for addresses. r1# show interface fast0/0 FastEthernet0/0 is up, line protocol is up Hardware is AmdFE, address is 0007.505e.9460 (bia 0007.505e.9460)

EUI-64 derived from MAC address 0007.505e.9460

Listening for all hosts multicast

Listening for all routers multicast

Solicited Node multicast for link-local address

MAC address 0007.505e.9460



# Manually Configured Interface Identifier Address



```
ipv6 unicast-routing
!
interface FastEthernet0/0
ip address 10.151.1.1 255.255.255.0
duplex auto
speed auto
ipv6 address 2001:db8::1/64

Enables IPv6 and assigns a global prefix and manual interface ID
```

## **IPv6 Interface with Manual Interface** Address

r1#show ipv6 interface fast0/0 FastEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::207:50FF:FE5E:9460 Global unicast address(es): 2001:db8::1, subnet is 2001:db8::/64 Global unicast address with manual interface ID of "1" Joined group address(es): FF02::1 FF02::2 Corresponding Solicited Node multicast address for manual interface ID FF02::1:FF00:1 Corresponding Solicited Node multicast address for Link-Local interface ID FF02::1:FF5E:9460 O MTU is 1500 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled Hosts use stateless autoconfig for addresses.



Routable /64 subnet

# **EUI-64 Configured Interface Identifier Address**



```
ipv6 unicast-routing
!
interface FastEthernet0/0
ip address 10.151.1.1 255.255.255.0
duplex auto
speed auto
ipv6 address 2001:db8::/64 eui-64
```

## IPv6 Interface with EUI-64 Interface Address

r1#show ipv6 interface fast0/0 FastEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::207:50FF:FE5E:9460 Global unicast address(es): Manually configured address with EUI-64 Interface ID 2001:db8::207:50FF:FE5E:9460, subnet is 2001:db8::/64 Joined group address(es): FF02::1 FF02::2 Solicited Node multicast for both manual and link-local address FF02::1:FF5E:9460 MTU is 1500 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled Hosts use stateless autoconfig for addresses. r1#show interface fast0/0 FastEthernet0/0 is up, line protocol is up Hardware is AmdFE, address is 0007.505e.9460 (bia 0007.505e.9460)

MAC address 0007.505e.9460 used for EUI-64

Link-Local address with EUI-64 interface ID

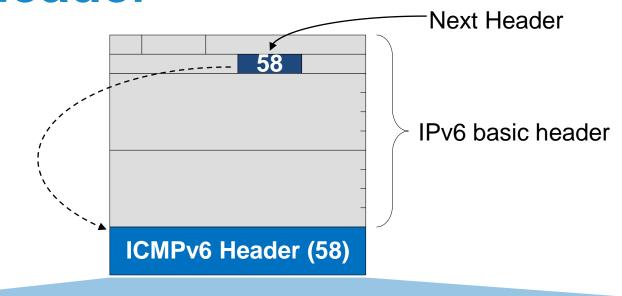


## ICMPv6 and Neighbour Discovery



## ICMPv6

**MRD** SLAAC MLD NDP **Multicast Stateless** Neighbour Multicast Router **Address Auto-**Discovery Listener **Discovery** (ARP) Configuration **Discovery** ICMPv6 IPv6




## ICMPv6 (RFC 2463)

- Combines several IPv4 functions
  - ICMPv4, IGMP and ARP
- Message types are similar to ICMPv4
  - Destination unreachable (type 1)
  - Packet too big (type 2)
  - Time exceeded (type 3)
  - Parameter problem (type 4)
  - Echo request/reply (type 128 and 129)



## **ICMPv6** Header



| ICMPv6 Type | ICMPv6 Code | Checksum |
|-------------|-------------|----------|
|             | ICMPv       | 6 Data   |

 Also used for Neighbour Discovery, Path MTU discovery and Multicast Listener Discovery (MLD)



## ICMPv6 Neighbour Discovery (RFC 4861)

- Replaces ARP, ICMP (redirects, router discovery)
- Reachability of neighbours
- Hosts use it to discover routers, auto configuration of addresses (SLAAC)
- Duplicate Address Detection (DAD)
- Consists of IPv6 header, ICMPv6 header, neighbour discovery header, and neighbour discovery options

## Neighbour Discovery Messages (ND)

| Message                         | Purpose                                                                      | ICMP<br>Code | Sender  | Target                        |
|---------------------------------|------------------------------------------------------------------------------|--------------|---------|-------------------------------|
| Router Solicitation (RS)        | Prompt routers to send RA                                                    | 133          | Nodes   | All routers                   |
| Router Advertisement (RA)       | Advertise default router, prefixes Operational parameters                    | 134          | Routers | Sender of RS<br>All routers   |
| Neighbour Solicitation (NS)     | Request link-layer of target                                                 | 135          | Node    | Solicited Node<br>Target Node |
| Neighbour<br>Advertisement (NA) | Response to NS (solicited) Advertise link-layer address change (Unsolicited) | 136          | Nodes   |                               |
| Redirect                        | Inform hosts of a better first hop                                           | 137          | Routers |                               |



## Router Solicitation and Advertisement (RS & RA)



Router

| Router<br>Solicitation |                                 |
|------------------------|---------------------------------|
| ICMP Type              | 133                             |
| IPv6 Source            | A Link Local (FE80::1)          |
| IPv6<br>Destination    | All Routers Multicast (FF02::2) |
| Query                  | Please send RA                  |

| Advertisement       |                                                   |
|---------------------|---------------------------------------------------|
| ICMP Type           | 134                                               |
| IPv6 Source         | A Link Local (FE80::2)                            |
| IPv6<br>Destination | All Nodes Multicast (FF02::1)                     |
| Data                | Options, subnet prefix, lifetime, autoconfig flag |

- Router solicitations (RS) are sent by booting nodes to request RAs for configuring the interfaces
- Routers send periodic Router Advertisements (RA) to the all-nodes multicast address



## **Neighbour Solicitation & Advertisement**

- Neighbour Solicitation (NS)
  - Used to discover link layer address of IPv6 node

| NS Function                 | Source  | Destination              |
|-----------------------------|---------|--------------------------|
| Address resolution          | Unicast | Solicited Node Multicast |
| Node reachability           | Unicast | Unicast                  |
| Duplicate Address Detection | ::0     | Solicited Node Multicast |

- Neighbour Advertisement (NA)
  - Response to neighbor solicitation (NS) message
  - A node may also send unsolicited Neighbour Advertisements to announce a link-layer address change.



## Neighbour Solicitation & Advertisement (NS & NA)



#### Neighbour Solicitation

| ICMP Type           | 135                           |
|---------------------|-------------------------------|
| IPv6 Source         | A Unicast                     |
| IPv6<br>Destination | B Solicited Node Multicast    |
| Data                | FE80:: address of A           |
| Query               | What is B link layer address? |





| Neighbour    |
|--------------|
| Advertisment |

| ICMP Type           | 136                              |
|---------------------|----------------------------------|
| IPv6 Source         | B Unicast                        |
| IPv6<br>Destination | A Unicast                        |
| Data                | FE80:: address of B, MAC Address |



## Viewing Neighbours in the Cache

"Stale" indicates that ND packet must be sent again

```
IPv6 Address
                                    Age Link-layer Addr State Interface
                                                                    Entry STALE due to no contact for > 30 secs
                                      0 aabb.cc00.7800 STALE Et0/0
FE80::A8BB:CCFF:FE00:7800
                                     50 aabb.cc00.7a00 STALE Et0/0
FE80:: A8BB: CCFF: FE00: 7A00
R1#ping ipv6
Target IPv6 address: FE80::A8BB:CCFF:FE00:7A00
Repeat count [5]:
Datagram size [100]:
Timeout in seconds [2]:
Extended commands? [nol:
Output Interface: Ethernet0/0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to FE80::A8BB:CCFF:FE00:7A00, timeout is 2 second
****
Success rate is 100 percent (5/5), round-trip min/avg/max = 16/24/32 ms
R1#sho ipv6 neighbors
                                                                                                       After PING
                                             Age Link-layer Addr State Interface
3 aabb.cc00.7800 STALE Et0/0
IPv6 Address
                                                                                     entry now reachable again
FE80::A8BB:CCFF:FE00:7800
                                                0 aabb.cc00.7a00 REACH Ft0/0 🔾
FE80::A8BB:CCFF:FE00:7A00
```

R1#sho ipv6 neighbors

## **Neighbour Cache Entry States**

#### INCOMPLETE

 Address resolution is in progress and the link-layer address of the neighbour has not yet been determined

#### REACHABLE

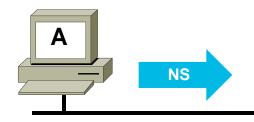
• The neighbour is known to have been reachable recently (within tens of seconds ago)

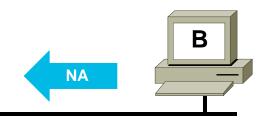
#### STALE

• The neighbour is no longer known to be reachable but until traffic is sent to the neighbour, no attempt should be made to verify its reachability

#### DELAY

 Delay sending probes for a short while in order to give upper layer protocols a chance to provide reachability confirmation


#### PROBE


 The neighbour is no longer known to be reachable, and unicast Neighbour Solicitation probes are being sent to verify reachability

## **Duplicate Address Detection (DAD)**

Tentative IP FE80::260:8FF:FE52:F9D8

Actual IP FE80::260:8FF:FE52:F9D8





| N. |  |
|----|--|
| N. |  |
|    |  |

**ICMP Type** 135 (Neighbour Solicitation)

**Ethernet DA** 33-33-FF-52-F9-D8

**IPv6 Header** 

**IPv6 Source** 

**IPv6 Destination** 

FF02::1:FF52:F9D8

**NS** Header

**Target Address** FE80::260:8FF:FE52:F9D8









**ICMP Type** 

135 (Neighbour Solicitation)

**Ethernet DA** 

33-33-00-00-00-01

**IPv6** Header

**IPv6 Source** 

FE80::260:8FF:FE52:F9D8

**IPv6 Destination** 

FF02::1

**NA** Header

**Target Address** 

FE80::260:8FF:FE52:F9D8

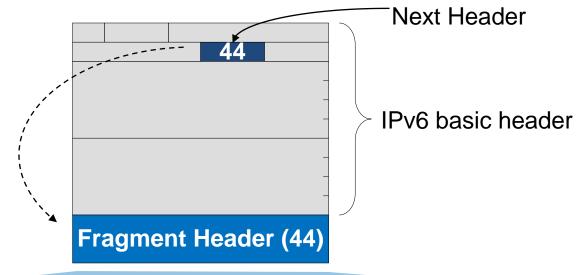
**Neighbour Discovery Option** 

**Target MAC** 

00-60-08-52-F9-D8



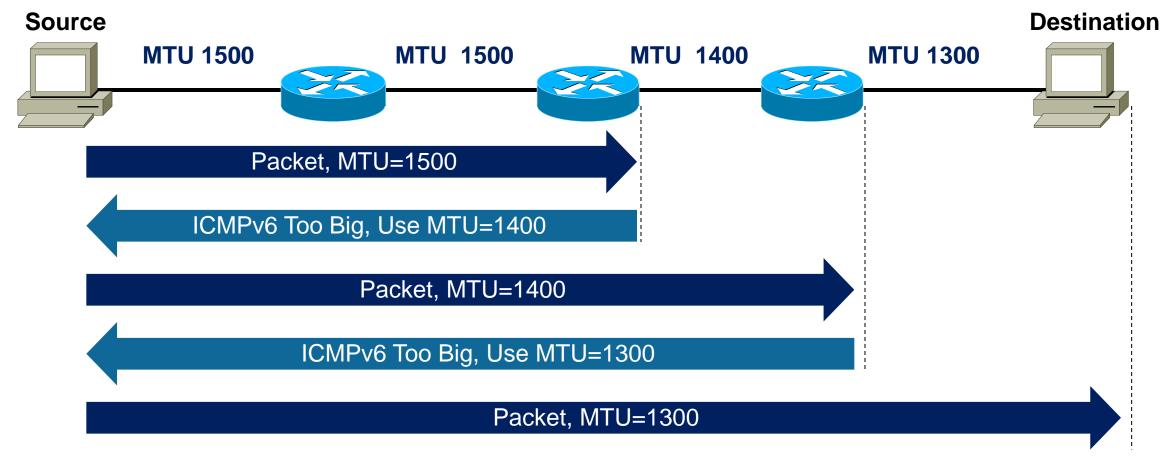
# Fragmentation and Path MTU Discovery




## Fragmentation in IPv6

- Unfragmentable part
  - IPv6 header plus any headers that must be processed by the nodes enroute
  - Repeated with fragments appended to it following the "fragment header"
- Fragmentable part
  - The headers that need to be processed only by the destination node = the end-to-end headers + upper layer header and data
  - Fragmentable part is divided into pieces with length multiple of 8 octets
- Minimum MTU for IPv6 is 1280 bytes
  - All links MUST support it




## **Fragment Header**



| Next Header    | Reserved | Fragment Offset |  | M |
|----------------|----------|-----------------|--|---|
| Identification |          |                 |  |   |
| Fragment Data  |          |                 |  |   |

- Fragmentation is left to end devices in IPv6
  - Routers do not perform fragmentation
- Fragment header used when an end node has to send a packet larger than the path MTU

## **Path MTU Discovery**



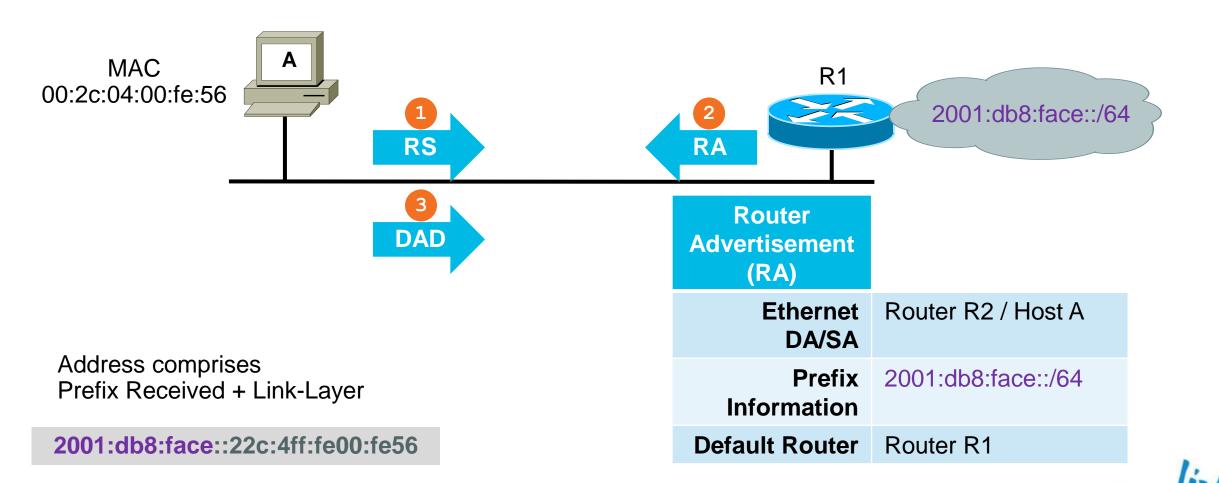
- Store PMTU per destination (if received)
- Age out PMTU (10 mins), reset to first link MTU





## Host Address Assignment




## **IPv6 Host Address Assignment Methods**

- Manual Assignment
- Stateless Address Autoconfiguration (SLAAC RFC 4862)
  - Allows auto assignment of address
- Stateful DHCPv6 (RFC 3315)
  - Allows DHCPv6 to allocate IPv6 address plus other configuration
- DHCPv6-PD (RFC 3633)
  - Allows DHCPv6 to allocate entire subnets to a router/CPE device
- Stateless DHCPv6 (RFC 3736)
  - SLAAC for host address allocation and DHCPv6 for other configuration



## Stateless Address Autoconfiguration (RFC4862)

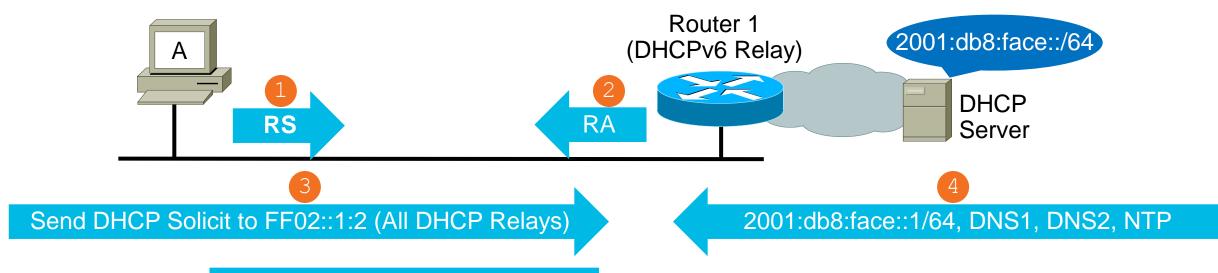
SLAAC is used to automatically assigned an address to a host "plug and play"



## **Prefix Renumbering**

 Prefixes can be given a lifetime in RA messages allowing seamless transition for renumbering to a new prefix

2001:db8:face::22c:4ff:fe00:fe56 R1 2001:db8:face::/64 2001:db8:beef::/64 RA RA **DAD** for new Router R2 / Host A **Ethernet** prefix DA/SA **Current Prefix** New Prefix 2001:db8:face::/64, Lifetime 30 seconds 2001:db8:beef::22c:4ff:fe00:fe56 **New Prefix** 2001:db8:beef::/64, Lifetime 30 seconds

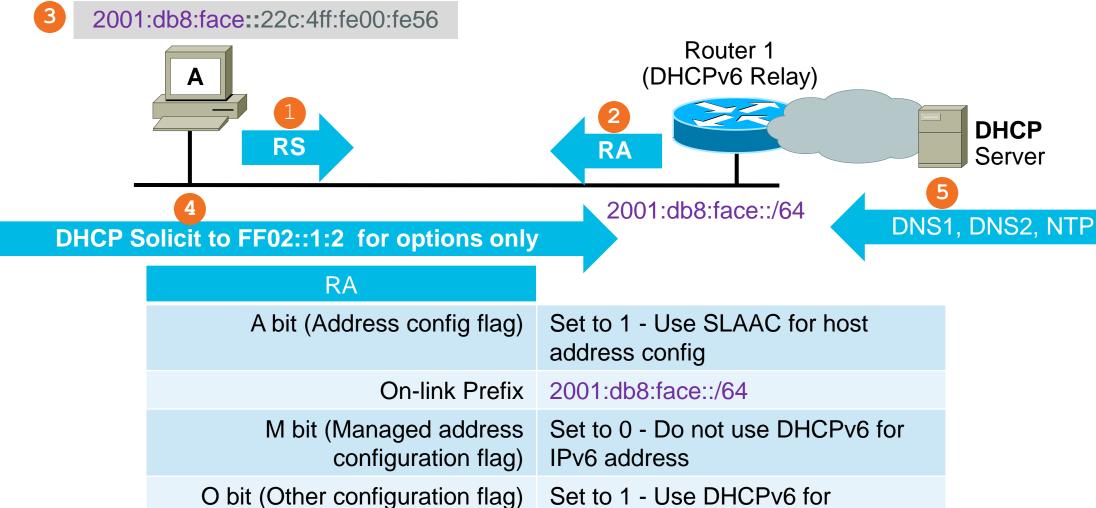

### DHCPv6

- Update version of DHCP. Process is same as in IPv4, but,
  - Router advertisements (RA) determine if DHCPv6 can be used
  - If no router found or if DHCPv6 can be used, then
    - DHCPv6 Solicit message is sent to the All-DHCP-Agents multicast address using link-local as source
  - Messages are renamed Solicit, Advertise, Request, Reply
- Multicast addresses used
  - FF02::1:2 = All DHCP Agents (servers or relays, Link-local scope)
  - FF05::1:3 = All DHCP Servers (Site-local scope)
  - DHCP Messages: Clients listen UDP port 546; servers and relay agents listen on UDP port 547
- Can be used for renumbering



## Router Advertisement for Stateful DHCPv6

RA message contain flags that indicate address allocation combination (A, M and O bits)




| RA                                         |                                                      |
|--------------------------------------------|------------------------------------------------------|
| A bit (Address config flag)                | Set to 0 - Do not use SLAAC for host config          |
| M bit (Managed address configuration flag) | Set to 1 - Use DHCPv6 for host IPv6 address          |
| O bit (Other configuration flag)           | Set to 1 - Use DHCPv6 for additional info (DNS, NTP) |



## Router Advertisement for Stateless DHCPv6

RA message contain flags that indicate address allocation combination (A, M and O bits)





additional info (DNS, NTP)

## **DHCPv6 Configuration options**

#### **Setting the bits**

#### A bit (default) just use SLAAC

interface e0/0 ipv6 address 2001:db8:1000::1/64



Host gets address and other SLAAC options. Nothing else

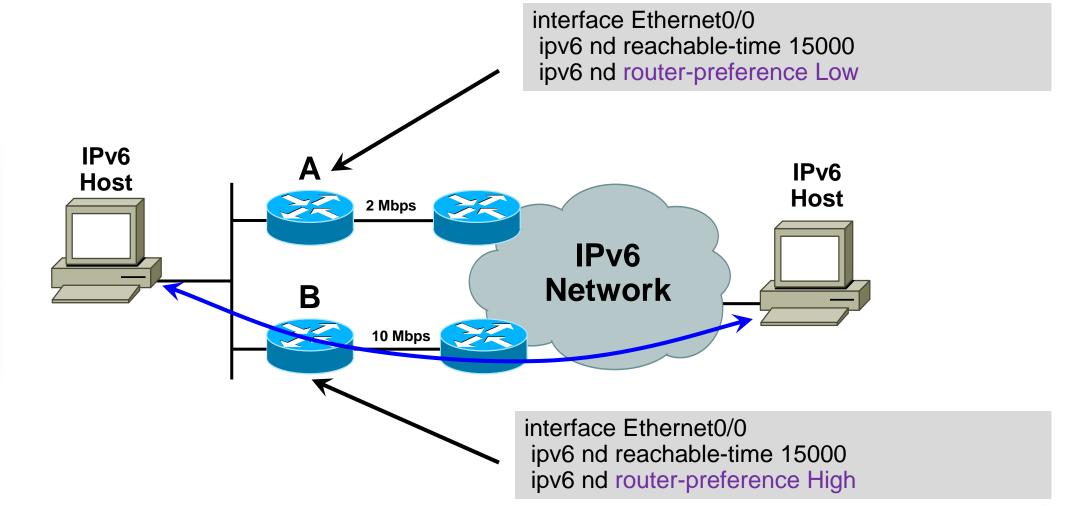
#### M bit & O bit (Stateful DHCP)

interface e0/0 ipv6 address 2001:db8:1000::1/64 ipv6 nd managed-config-flag ipv6 nd other-config-flag ipv6 dhcp relay destination 2001:db8::10



Host gets full stateful config from DHCP server (2001:db8::10)

#### A bit & O bit (Stateless DHCP)


interface e0/0 ipv6 address 2001:db8:1000::1/64 ipv6 nd other-config-flag ipv6 dhcp relay destination 2001:db8::10



Host get address from SLAAC and other config from DHCP server (2001:db8::10)

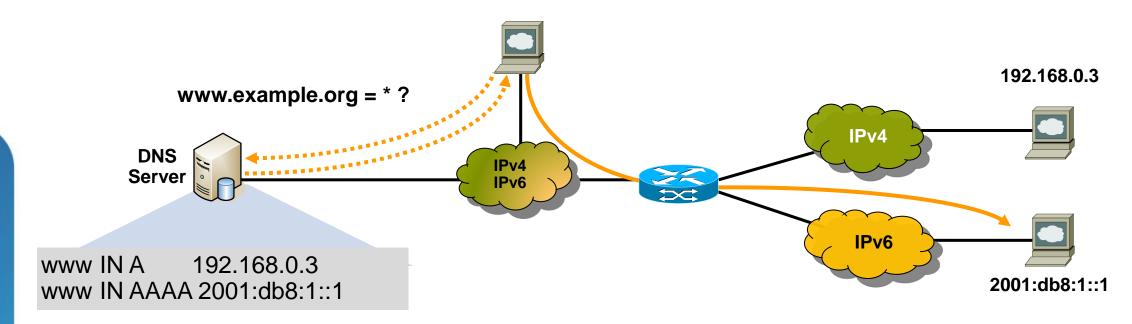


## **Default Router Selection**





## Domain Name System (DNS)




## **IPv6 and DNS Entries**

| Function                     | IPv4                                                       | IPv6                                                                                              |
|------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Hostname<br>to<br>IP Address | A Record www.abc.test. IN A 92.168.30.1                    | AAAA Record (Quad A)<br>www.abc.test. IN AAAA 2001:db8:C18:1::2                                   |
| IP Address<br>To<br>Hostname | PTR Record 1.30.168.192.in-addr.arpa. IN PTR www.abc.test. | PTR Record 2.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.8.1.c.0.8.b.d.0.1. 0.0.2.ip6.arpa IN PTR www.abc.test. |



### **Dual Stack Approach & DNS**



- In a dual stack case an application that:
  - Is IPv4 and IPv6-enabled
  - Can query the DNS for IPv4 and/or IPv6 records (A) or (AAAA) records
  - Chooses one address and, for example, connects to the IPv6 address





# Routing IPv6



# **Overview of Routing Protocols In IPv6**

- Routing in IPv6 is unchanged from IPv4
  - Still has two families of routing protocols: IGP and EGP
  - Still uses the longest-prefix match routing algorithm
- IGP
  - RIPng (RFC 2080)
  - Cisco EIGRP for IPv6
  - Integrated IS-IS for IPv6 (RFC 5308)
  - OSPFv3 (RFC 5340)
- EGP
  - MP-BGP4 (RFC 4760) and Using MP-BGP for IPv6 (RFC 2545)
- Cisco IOS supports all IPv6 routing protocols



# **Static Routing**

- Similar to IPv4
- Next hop / interface is required

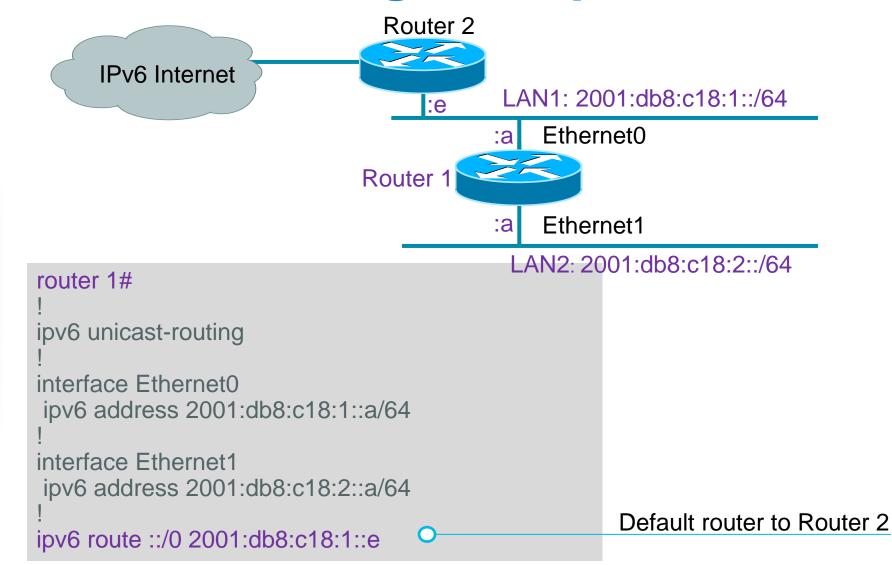
Static routing CLI for IPv6

Forward a packets via link-local NH

ipv6 route ipv6-prefix/prefix-length {ipv6-address | interface-type interface-number [ipv6-address]} [administrative-distance] [administrative-multicast-distance | unicast | multicast] [tag tag]

!

Forward a packets via NH using admin of 10


Router(config)# ipv6 route 2001:DB8::0/32 2001:DB8:1:1::1 10

!

Router(config)# ipv6 route 2001:DB8::/32 Ethernet 1/0 FE80::215:C7FF:FE21:8640
!



## **Default Routing Example**





#### **EIGRP for IPv6 Features**

Three new TLVs introduced

Hello messages use FF02::A (all EIGRP routers)

Automatic summarisation is disabled by default for IPv6 (unlike IPv4)

Process starts in "shutdown" mode

RID stays at 32 bits



# **EIGRP for IPv6 Configuration**



```
Router1# show ipv6 eigrp neighbor
H Address Interface Hold Uptime SRTT RTO Q Seq
(sec) (ms) Cnt Num
0 FE80::260:3eff:fe47:1530 E0 14 00:01:43 1 4500 0 1
```

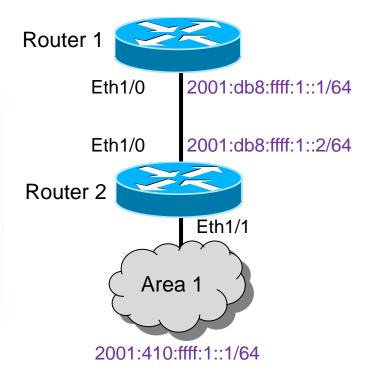
Router1# show ipv6 eigrp topology all-links

P 2001:db8:c18:1::/64, 1 successors, FD is 28160, serno 1 via Connected, Ethernet0 via FE80::260:3eff:fe47:1530 (30720/28160), Ethernet0

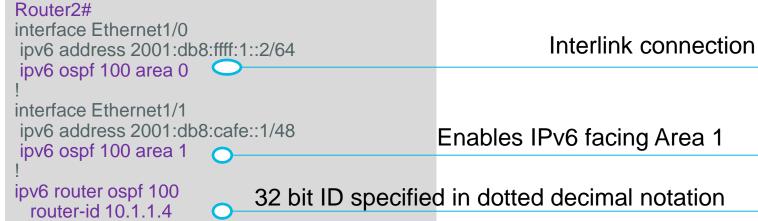
Neighbours and next hops are identified by link-local address



#### **OSPFv3 Overview**


- OSPFv3 is OSPF for IPv6 (RFC 5340)
- Based on OSPFv2 with enhancements

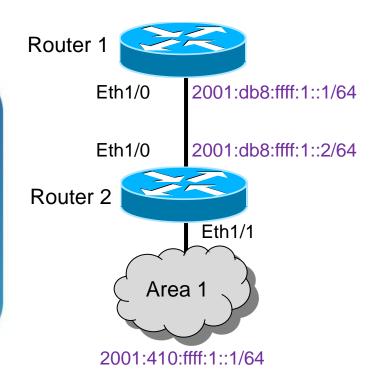
- Distributes IPv6 prefixes only
- Ships-in-the-night with OSPFv2
- No in-protocol Authentication




# **OSPFv3 Configuration Example**

#### **Classic IOS syntax**

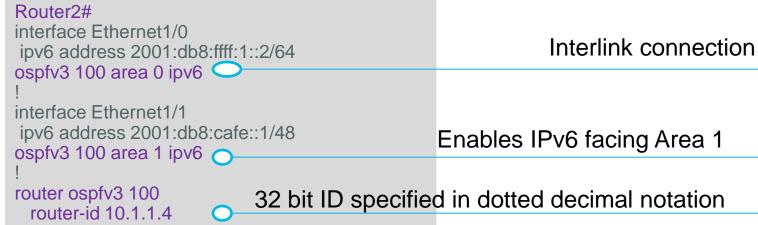









# **OSPFv3 Configuration Example**


#### **Unified IOS syntax**

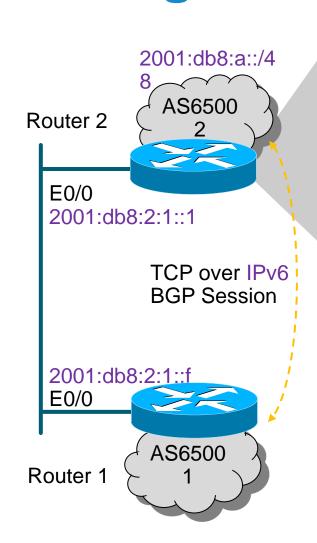


Supported as of 15T/15S IOS trains

```
Router1#
interface Ethernet1/0
ipv6 address 2001:db8:ffff:1::1/64
ospfv3 100 area 0 ipv6
!
router ospfv3 100
router-id 10.1.1.3

Interlink connection
OSPFv3 process
```






#### MP-BGP for IPv6 Overview

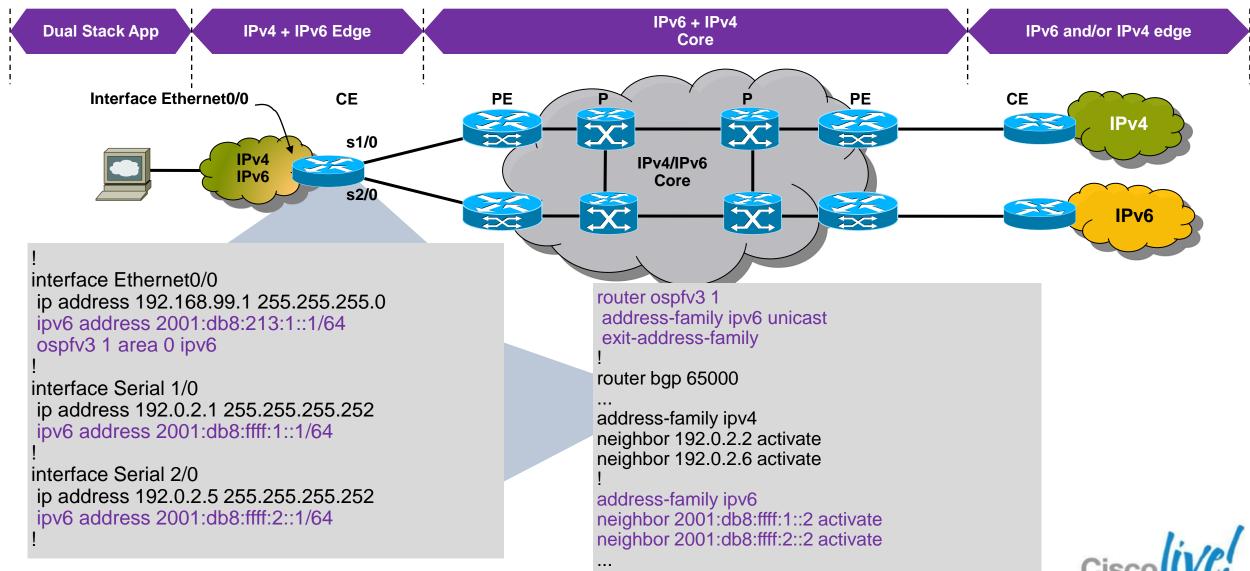
- TCP Interaction
  - BGP-4 runs over a TCP (179) session using IPv4 or IPv6
  - The NLRI BGP carried (IPv4, IPv6, MPLS) is agnostic of the session protocol
- Router ID
  - BGP router-id must still exist is in 32 bit dotted decimal notation.
  - The RID does not have to be in valid IPv4 format. For example, 0.0.0.1 is valid
  - In BGP it is used as a tie breaker and is sent within the OPEN message
- Next-hop contains a global IPv6 address (or potentially a link local address)
- Link local address as a next-hop is only set if the BGP peer shares the subnet with both routers (advertising and advertised)



**BGP IPv6 Configuration Global Address Peering** 



```
Router2#
!
interface Ethernet0/0
ipv6 address 2001:db8:2:1::1/64
!
router bgp 65002 Router ID in dotted decimal notation
bgp router-id 10.10.10.1 Disable default IPv4 behaviour
no bgp default ipv4-unicast Disable default IPv4 behaviour
neighbor 2001:db8:2:1::f remote-as 65001
!
Use IPv6 address family
address-family ipv6
neighbor 2001:db8:c18:2:1::f activate Activate IPv6 session
network 2001:db8:a::/480
!
IPv6 prefix to be advertised
```






# Putting it all Together



# **Dual Stack Configuration**





Q & A



# Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2013 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site www.ciscoliveaustralia.com/mobile
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 8 March 12:00pm-2:00pm





Don't forget to activate your Cisco Live 365 account for access to all session material,

communities, and on-demand and live activities throughout the year. Log into your Cisco Live portal and click the "Enter Cisco Live 365" button.

www.ciscoliveaustralia.com/portal/login.ww

# CISCO

