

What You Make Possible

IP Multicast – Concepts, Design and Troubleshooting BRKMPL-1261

Agenda

- Multicast overview
 - What is it and when would we use it?
- Multicast fundamentals
 - Technical concepts and protocols
- Multicast Design and Configuration
 - 1 case study, 3 solutions
- Troubleshooting common multicast issues

Multicast Overview

Unicast Vs Multicast

BRKMPL-1261

© 2013 Cisco and/or its affiliates. All rights reserved.

Broadcast Vs Multicast

Broadcast

Multicast

Multicast Uses

Any situation where multiple endpoints need to receive identical information at the same time

Streaming video, IPTV

Music on hold

Data replication

Periodic data delivery - stock quotes, sports scores, news reports

Most commonly used for one-to-many or some-to-many data flows

Multicast Advantages

- Enhanced scalability: Network utilisation is independent of the number of receivers
- Reduced resource utilisation: Controls network bandwidth and reduces server and router loads
- Deterministic performance: subscriber number 1 and subscriber number 10000 have identical experience

LOWER TCO

Multicast Considerations

- Multicast is UDP-based: No flow control, sequencing, errorcorrection, retransmissions.
- "Best effort" delivery: Sender has no idea if all subscribers have received the data. Subscribers don't know if they have missed a packet. Applications should be handling missed packets.
- No congestion avoidance: Lack of TCP windowing and "slow-start" mechanisms may result in network congestions.
- Added Complexity: If you have the bandwidth available then unicast delivery model may be a simpler option.

Multicast Fundamentals

Multicast Service Model Overview

IP Multicast Source

- Any device that sends an IP packet with a destination address between 224.0.0.0 – 239.255.255.255
- A device can be a multicast sender and a multicast receiver at the same time
- There is no multicast control traffic between the sender and the network, or between the sender and receiver.

Q. So how does the source know when to send traffic ? A. An application tells the source to start transmitting.

Multicast Addressing—224/4

- IANA Reserved addresses (never use these !) 224.0.00 - 224.0.0255224.0.1.0 - 224.0.1.255Internetwork control block
- Other IANA allocated address ranges 232.0.0.0 - 232.255.255.255 Source Specific Multicast
 - 233.0.0.0 234.255.255.255 GLOP/UBM Addressing
 - 239.0.0.0 239.255.255.255 'Private' multicast range
- Check http://www.iana.org/assignments/multicastaddresses/multicast-addresses.xml

Local network control block

Multicast Addressing

Be Aware of the 32:1 Address Overlap for L3-L2 address mapping

32–IP Multicast Addresses

http://www.cisco.com/en/US/tech/tk828/technologies_white_paper09186a00802d46 43.shtml

BRKMPL-1261

1–Multicast MAC Address

0x0100.5E01.0101

Multicast Service Model Overview – Layer 2

Host-Router Signalling: IGMP

- Internet Group Management Protocol
- Used by a host to notify the local router that it wishes to receive (or stop receiving) multicast traffic for a given destination address or "group".
- RFC 2236 specifies version 2 of IGMP Most widely deployed and supported
- RFC 3376 specifies version 3 of IGMP Good network support but host implementations still patchy

IGMPv2 – Joining a Group

IGMPv2 – Maintaining a Group

IGMP Snooping

- By default, switches forward all layer 2 multicast frames to all ports (except the originating port)
- IGMP snooping eavesdrops on IGMP messaging
- Constrains MC to only ports that want it (key point)
- IGMP snooping is on by default in IOS-based switches
- Replaces Cisco Group Management Protocol (CGMP).

Advantages of IGMP Snooping

- Hosts only receive MC traffic that they request
- Report suppression prevents first-hop router from being flooded with IGMP reports for the same group
- "Fast-leave" functionality stop sending MC group as soon as switch hears a "leave" on an interface

When would IGMP snooping fast-leave be a bad idea? **Q**. When there is more than 1 receiver attached to an interface

Multicast Service Model Overview – Layer 3

Multicast Service Model Overview – Layer 3

Router-Router Signalling: PIM

- Protocol Independent Multicast
- Used by a router to notify an upstream router that it wishes to receive (or stop receiving) multicast traffic for a given group.
- 3 main classifications of PIM Any Source Multicast (asm-pim) – 3 "modes" Dense, sparse, sparse-dense Source-Specific Multicast (pim-ssm) Bidirectional (pim-bidir)

Router-Router Signalling: PIM

- Protocol Independent Multicast
- Used by a router to notify an upstream router that it wishes to receive (or stop receiving) multicast traffic for a given group.
- 3 main classifications of PIM

Any Source Multicast (asm-pim) – 3 "modes"

Legacy - Dense, sparse, sparse dense Cisco Proprietary Source-Specific Multicast (pim-ssm) Bidirectional (pim-bidir) Only for specific-use cases (many senders)

Router-Router Signalling: PIM-SM

- Each PIM router forms neighbour relationship with adjacent PIM routers using PIM "hello" messages every 30 seconds.
- When a PIM router wants to receive a multicast stream, it sends a PIM "join" message towards the IP address of the multicast source.
- When a PIM router wants to stop receiving a multicast stream, it sends a PIM "prune" message towards the IP address of the multicast source.

- Multicast traffic flows are checked from the sender back down the path created by the PIM messages. This is known as Reverse Path Forwarding (RPF).
- All received multicast traffic is subject to an RPF check
 - Is the incoming MC traffic being received via the interface on which I have a route to the source?
 - RPF check PASS = accept MC traffic and send it on
 - RPF check FAIL = drop traffic on floor
- Prevents loops and duplicate packets

Source

Source

Source

- Static multicast routes can be used to send PIM messages down a different path than would be selected from the unicast routing table.
- Useful if you want MC traffic to travel over different links to unicast traffic
- Best suited for small networks due to scalability issues managing many static routes.
- Be careful of creating PIM routing loops !

Source 192.168.1.1

Source 192.168.1.1

Source 192.168.1.1

Static Multicast Routes

Source 192.168.1.1

Static Multicast Routes

Source 192.168.1.1

Router-Router Signalling: PIM-SM

But....we have a problem. The receiver just told me the group it wants to join but didn't identify the source! So in which direction is the "upstream" router ?

PIM-SM: Rendezvous Point (RP)

- PIM-SM uses a router called a Rendezvous Point (RP).
- The sole purpose of the RP is to allow the first-hop router to find out the IP address of the source for a particular group.
- The receivers don't know the source address and don't care - hence the term "Any Source Multicast".
- An RP is mandatory for PIM sparse-mode networks.

Cisco

PIM-SM: Rendezvous Point (RP)

BRKMPL-1261

PIM "register 234.1.1.1" message sent to RP encapsulating MC steam 20 Source 10 10.1.1.1

PIM-SM: Rendezvous Point Discovery

So how does the network know where the RP is ?

Option 1: Static RP configuration Configure all routers in the network with the IP address of the RP

ip pim rp-address 192.168.0.1

Option 2: Dynamic RP configuration Configure the RP to tell all other routers that it is the RP Cisco proprietary mechanism is called "Auto-RP" IETF standard is known as Bootstrap Router (BSR) – RFC 5059

IGMPv3 – Joining a Group

IGMPv3 – Joining a Group

IGMPv3 Source Discovery

Q: How does the receiver know the source address for each group?

A: The receiver app is pre-populated with this information.

IGMPv3 – Changing a Group

IGMPv3 – Changing a Group

192.168.1.1

IGMPv3 – Changing a Group

192.168.1.1

Advantages of IGMPv3

- Hosts can join one group and leave another in the same transaction. IGMPv2 requires separate report/leave messages.
- Reduces the likelihood of multicast group being spoofed by a rogue source.
- Eliminates overlapping multicast addresses.
- First-hop router immediately knows the source address, so no need for Rendezvous Point – can use PIM-SSM.

Router-Router Signalling: PIM-SSM

- SSM = Source Specific Multicast
- PIM-SSM requires the first-hop router to know the address of the MC source for each group
- PIM-SSM is usually deployed in conjunction with IGMPv3, where the receiver indicates the source address in the IGMPv3 report packet
- The first-hop router sends a PIM join directly towards the sender using the unicast routing table. There is no "Shared Tree" via an RP as in PIM-SM.

PIM-SSM: Operation

192.168.1.1

PIM-SSM Advantages

- Easy to configure and maintain
 - No RPs
 - No Multicast Source Discovery Protocol (MSDP) between redundant RPs
- Efficient network usage
 - Traffic is not routed temporarily via the RP
 - Most direct path from source to receiver is always used
- Enhanced security
 - Spoofing of MC stream is more difficult

PIM-SSM Mapping

- The ideal SSM architecture uses IGMPv3 for host-router signalling and PIM-SSM for router-router signalling
- But...IGMPv3 host support is patchy, whereas IGMPv2 is ubiquitous
- Q: Is there a way to use PIM-SSM in the network when I have hosts that only support IGMPv2?
- A: Yes its called PIM-SSM mapping
- PIM-SSM mapping can be used as an interim measure until IGMPv3 is supported on all hosts

IPv4 vs. IPv6 Multicast. A Quick (

IP Service	IPv4 Solution	
Address Range	32-Bit, Class D	128
Routing	Protocol-Independent All IGPs and BGPv4+	Pr Al Wi
Forwarding	PIM-DM, PIM-SM: ASM, SSM, BiDir	PIM-
Group Management	IGMPv1, v2, v3	Multic
Domain Control	Boundary/Border	
Interdomain Source Discovery	MSDP Across Independent PIM Domains	Sing

GI	im	pse

IPv6 Solution

B-Bit (112-Bit Group)

rotocol-Independent

I IGPs and BGPv4+ th IPv6 Mcast SAFT

SM: ASM, SSM, BiDir

cast Listener Discovery MLDv1, v2

Scope Identifier

le RP Within Globally Shared Domains

Multicast Design

Case Study - Background

- Company has 1 head office with 200 staff, 1 branch office with 10 staff and occasional home users
- Management wants to deploy an in-house, always-on video channel that staff may watch at any time for the latest product releases and Company news
- Important events will require all users to watch the channel at the same time
- The video bitrate is 2 Mbps

Case Study – Network Topology

Case Study – Unicast Bandwidth Scenario

Case Study – Network Support for MC

- Cisco IOS provides broad platform support for PIM (all variants) and IGMPv1/2/3
- Check with WAN provider for MC support
 - Dark fibre, EoSDH, EoMPLS, Frame relay, ATM, SDH/SONET, leased-line services – usually no issues
 - Managed ethernet, L3VPN, VPLS check with provider.
 - SP network generally needs to be configured for MC support
- No native support for multicast across the Internet
- No native IPSec support for multicast

Case Study – Design Options

Option 1: Any Source Multicast (ASM) design Hosts run IGMPv2 Network runs PIM-SM with RP

Option 2: Source Specific Multicast (SSM) design Hosts run IGMPv3 Network runs PIM-SSM

Option 3: SSM design with IGMP mapping Hosts run IGMPv2

Network runs PIM-SSM with source address mapping

Case Study – ASM

Step 1: Configure IGMP snooping on access switches

- IGMP snooping enabled by default on Cisco devices
- Configure

"ip igmp snooping vlan <x> immediate-leave" for vlans with directly Switch A#sh ip igmp snooping vlan 10 attached hosts only. Vlan 10:

```
IGMP snooping
IGMPv2 immediate leave
Multicast router learning mode
CGMP interoperability mode
Robustness variable
Last member query count
Last member query interval
```

Switch A#

- : Enabled
- : Enabled

- : pim-dvmrp
- : IGMP ONLY
- : 2
- : 2
- : 1000

Case Study – ASM

Step 2: Configure all routers for multicast Globally enable multicast routing:

Router A(config) #ip multicast-routing Router A(config) #do show ip multicast global Multicast Routing: enabled Multicast Multipath: disabled Multicast Route limit: No limit Multicast Triggered RPF check: enabled Multicast Fallback group mode: Sparse Router A(config)#

Configure PIM on all internal router interfaces:

Router A(config-if) #int fast 0/3 Router A(config-if) #ip pim sparse-mode Router A(config-if)#

Case Study – ASM

Case Study – ASM Step 4: Verify PIM Neighbours

Router_A#sh ip	pim neighbor				
PIM Neighbor Table					
Neighbor	Interface	Uptime/Expires	Ve:	r DR	
Address				Prio/Mode	
10.0.0.5	FastEthernet0/3	1d02h/00:01:17	v 2	1 / DR S	
10.0.3	FastEthernet0/2	1d01h/00:01:31	v 2	1 / DR	
Router_A#					

Note: when PIM is enabled on an interface, IGMPv2 is also automatically enabled on that interface.

Case Study – ASM Step 5: Select RP router

- RP should be in a central location between sender and receivers.
- CPU grunt not critical as RP processing overhead is low.
- Select a router that has high network availability.
- Ensure the RP has a /32 loopback address as the source.
- Recommended to assign loopback address dedicated for RP use only (not used for router ID etc).

Case Study - ASM Step 5: Select RP router

Step 6: Configure static RP on all routers (including the RP)

ip access-list standard MC Group 1 permit 234.1.1.0 0.0.0.255

Router C#conf t Enter configuration commands, one per line. End with CNTL/Z.

Router C(config) #ip pim rp-address 4.4.4.4 MC Group 1

Step 7: Verify RP to Group mappings

Router C#sh ip pim rp mapping

```
PIM Group-to-RP Mappings
Acl: MC Group 1, Static
    RP: 4.4.4.4 (Router D)
Router C#
```


Step 8: Enable multicast over non-multicast networks

- Use GRE, L2TPv3 to tunnel MC over non-MC networks
- Need a static mroute for both the RP address and the MC source address for RPF check to pass.

http://www.cisco.com/en/US/tech/tk828/technologies_configuration <u>example09186a008</u>01a5aa2.shtml

Case Study - ASM Step 8: Enable multicast over non-multicast networks

Case Study – ASM – IGMP Verification


```
Router A#sh ip igmp membership
Flags: A - aggregate, T - tracked
      L - Local, S - static, V - virtual, R - Reported through v3
      I - v3lite, U - Urd, M - SSM (S,G) channel
      1,2,3 - The version of IGMP the group is in
 <snip>
Channel/Group
                             Reporter Uptime Exp. Flags Interface
 *,234.1.1.1
                              192.168.1.2 00:00:12 02:47 2A
Router A#
```

Fa0/12

Case Study – ASM – Mroute Verification

Case Study – Design Options

- Option 1: Any Source Multicast (ASM) design Hosts run IGMPv2
 - Network runs PIM-SM
- Option 2: Source Specific Multicast (SSM) design Hosts run IGMPv3 Network runs PIM-SSM
- Option 3: SSM design with IGMP mapping Hosts run IGMPv2
 - Network runs PIM-SSM with source address mapping

Case Study – SSM Step 1: Configure all routers for SSM Globally enable multicast routing:

Router A(config) #ip multicast-routing

Configure PIM-SSM ranges:

! Define ACL for SSM ranges (default is 232.0.0.0/8)

Router A(config) #ip access-list standard SSM-Groups Router A(config-std-nacl) #permit 234.0.0.0 0.255.255.255

! Configure SSM range

Router A(config-std-nacl) #ip pim ssm range SSM-Groups Router A(config)#

Step 2: Configure IGMP

IGMPv3 snooping enabled by default on Cisco devices

Need to explicitly configure IGMPv3 on router interface that connects to LAN

```
Router A(config) #int fast 0/12
Router A(config-if) #ip igmp version 3
Router A(config-if)#
```

Router A#sh ip igmp interface fast 0/12 FastEthernet0/12 is up, line protocol is up Internet address is 192.168.1.1/24 IGMP is enabled on interface Current IGMP host version is 3 Current IGMP router version is 3 IGMP query interval is 60 seconds IGMP querier timeout is 120 seconds <snip> Router A#

Step 3: Configure all internal links for PIM-SM

Step 4: Enable multicast over non-multicast networks

Need a static mroute for MC source only

Case Study – SSM – IGMP Verification


```
Router A#show ip igmp membership
```

```
Channel/Group-Flags:
```

/ - Filtering entry (Exclude mode (S,G), Include mode (*,G))

Channel/Group	Reporter	Uptime	Exp.	Fla
/*,234.1.1.1	192.168.1.2	00:43:29	stop	3MA
192.168.3.2,234.1.1.1		00:43:29	02:03	RA

Router A#

Interface gs Fa0/12 Fa0/12

Case Study – SSM – Mroute Verification

Case Study – Design Options

- Option 1: Any Source Multicast (ASM) design Hosts run IGMPv2
 - Network runs PIM-SM
- Option 2: Source Specific Multicast (SSM) design Hosts run IGMPv3
 - Network runs PIM-SSM
- Option 3: SSM design with IGMP mapping Hosts run IGMPv2
 - **Network runs PIM-SSM with source address mapping**

Case Study – IGMPv2 + PIM-SSM

Step 1: Configure IGMPv2 snooping on access switches

IGMP snooping enabled by default on Cisco devices

Configure "ip igmp snooping vlan <x> immediate-leave"

Switch_A#sh ip igmp snooping vlan	10	
Vlan 10:		
IGMP snooping	:	Enabled
IGMPv2 immediate leave	:	Enabled
Multicast router learning mode	:	pim-dvmrp
CGMP interoperability mode	:	IGMP_ONLY
Robustness variable	:	2
Last member query count	:	2
Last member query interval	:	1000

Switch A#

Case Study – IGMPv2 + PIM-SSM Step 2: Configure all routers for multicast Globally enable multicast routing:

Router A(config) #ip multicast-routing Router A(config) #do show ip multicast global Multicast Routing: enabled Multicast Multipath: disabled Multicast Route limit: No limit Multicast Triggered RPF check: enabled Multicast Fallback group mode: Sparse Router A(config)#

Configure PIM on all internal router interfaces:

```
Router A(config-if) #int fast 0/3
Router A(config-if) #ip pim sparse-mode
Router A(config-if)#
```


Case Study – IGMPv2 + PIM-SSM

Case Study – IGMPv2 + PIM-SSM Step 3: Configure all routers for SSM

Configure PIM-SSM ranges:

! Define ACL for SSM ranges (default is 232.0.0/8)

Router A(config) #ip access-list standard SSM-Groups Router A(config-std-nacl) #permit 234.0.0.0 0.255.255.255

! Configure SSM range

Router A(config-std-nacl) #ip pim ssm range SSM-Groups Router A(config)#

Case Study – IGMPv2 + PIM-SSM Step 4a: Configure static IGMP SSM mapping

Globally enable IGMP mapping

Router A(config) #ip igmp ssm-map enable

Configure static group-to-source mapping using ACL:

Router A(config) #no ip igmp ssm-map query dns Router A(config) #access-list 10 permit host 234.1.1.1 Router A(config) #ip igmp ssm-map static 10 192.168.3.2

"When I see an IGMPv2 report for groups defined in ACL 10, assign the source address 192.168.3.2"

Case Study – IGMPv2 + PIM-SSM Step 4b: Configure dynamic IGMP SSM mapping Globally enable IGMP mapping

Router A(config) #ip igmp ssm-map enable

Configure dynamic group-to-source mapping using DNS:

Router A(config) #ip igmp ssm-map query dns Router A(config) #ip name-server 192.168.3.10

> "When I see an IGMPv2 report for any group, perform a reverse DNS lookup to obtain the source address"

Case Study – IGMPv2 + PIM-SSM **IGMP SSM mapping configuration locations**

Case Study – SSM Mapping Verification Step 5: Verify IGMP mapping

Static mapping

Router_A#sh ip	2	igmp ssm-mappi
Group address	•	234.1.1.1
Database	•	Static
Source list	•	192.168.3.2
Router_A#		

Dynamic mapping

Router_A#sh ip	igmp ssm-mappi
Group address:	234.1.1.1
Database :	DNS
DNS name :	1.1.1.234.in-a
Expire time :	860000
Source list :	192.168.3.2
Router A#	

.ng 234.1.1.1

addr.arpa

Case Study – SSM Mapping – Verification

Router-Router Signalling: PIM Choices

For simple MC deployments, use these guidelines:

- If your hosts and MC application support IGMPv3, use PIM-SSM.
- If IGMPv3 support is not an option, use PIM-SM and IGMPv2.
- Consider IGMP mapping if IGMPv3 host and application support is "Coming" Soon".

Troubleshooting

Mimicking a Multicast Source

Use video streaming software on a PC such as VLC:

vlc --repeat filename.avi --sout '#standard{access=udp,mux=ts,dst=234.1.1.1:1234}

Use a ping flood or traffic generator to fake it....

MC Source#ping Protocol [ip]: Target IP address: 234.1.1.1 Repeat count [1]: 10000000000 Datagram size [100]: 1300 Timeout in seconds [2]: 0 Extended commands [n]: y Interface [All]: FastEthernet1/0/24 Source address: 192.168.3.2 Type escape sequence to abort. Sending 1215752192, 1300-byte ICMP Echos to 234.1.1.1, timeout is 0 seconds: Packet sent with a source address of 192.168.3.2

Mimicking a Multicast Receiver

PC running VLC to join MC group

```
vlc udp:@234.1.1.1 (IGMPv2 report)
```

or

vlc udp:192.168.3.20234.1.1.1 (IGMPv3 report)

Router joins MC group as if it were a receiver

```
! Send IGMPv2 report for 234.1.1.1
Router(config-if)#ip igmp version 2
Router(config-if) #ip igmp join-group 234.1.1.1
```

or

```
! Send IGMPv3 report for 234.1.1.1, source 192.168.3.2
Router(config-if) #ip igmp version 3
Router(config-if) #ip igmp join-group 234.1.1.1 source 192.168.3.2
```


Mimicking a Multicast Receiver

Statically join a router interface to a group

Router(config-if)#ip igmp static-group 234.1.1.1

Router(config-if) #ip igmp static-group 234.1.1.1 source 192.168.3.2

Router(config-if) #ip igmp static-group 234.1.1.1 ssm-map

Router A Receivers are not required. Just send the MC stream Fa0/12 192.168.1.1 onto the LAN regardless.

Common Causes of Multicast Problems

- Source problem
 - Is the source sending the MC stream properly?
- Receiver issue
 - Is the client asking to receive the stream ?
- Underlying network issue
 - Is the underlying network OK?
- MC network misconfiguration Is the network configured correctly?

Source Not Sending Stream Correctly

- Verify source is actually sending MC stream
 - tcpdump, Wireshark, SNMP
- Check first-hop router is receiving MC at correct bit-rate
 - compare current rate to baseline and historical rate

```
Router C#sh ip mroute active
Active IP Multicast Sources - sending >= 4 kbps
Group: 234.1.1.1, (Stream 1)
   Source: 192.168.3.2 (Media Server)
     Rate: 165 pps/1324 kbps(1sec), 1964 kbps(last 30 secs), 1963 kbps(life avg)
Router C#
```


Source – Low TTL Value

Incorrect source TTL can cause MC stream to be dropped

Receiver Issue

Use "debug ip igmp" to verify IGMP reports are being received.

IGMP(0): Received v2 Report on FastEthernet0/12 from 192.168.1.2 for 234.1.1.1 IGMP(0): Received Group record for group 234.1.1.2, mode 2 from 192.168.1.2 for 0 sources IGMP(0): WAVL Insert group: 234.1.1.1 interface: FastEthernet0/12 Successful IGMP(0): MRT Add/Update FastEthernet0/12 for (*,234.1.1.1)

If not seeing reports come in, then use packet sniffer on receiver.

Underlying Network Issue

The cause of most multicast problems is not multicast (!)

Q: Why might users report a general network issue as a multicast problem?

A: Small amounts of packet loss, excessive latency or jitter, routing reconvergence are immediately evident to streaming audio/video users.

Check for interface errors, link congestion, duplex mismatch, routing reachability – Networking 101 stuff !

Multicast Network Misconfiguration

Verify

- All internal links have pim sparse mode configured
- RP is configured on all routers (including the RP itself)

```
Router F#sh ip mroute
                              Missing RP configuration
IP Multicast Routing Table
<snip>
 Timers: Uptime/Expires
 Interface state: Interface, Next-Hop or VCD / State/Mode
(*, 234.1.1.1), 00:06:17/stopped, RP 0.0.0.0, flags: SJC
  Incoming interface: Null, RPF nbr 0.0.0.0
  Outgoing interface list:
    FastEthernet0/1, Forward/Sparse, 00:06:17/00:02:44
```


Multicast Network Misconfiguration

Verify

- Network and hosts are running same IGMP version
- Verify RPF check passes. 'sh ip mroute count | inc RPF failed|Other

```
Router F#sh ip mroute
IP Multicast Routing Table
<snip>
(*, 234.1.1.1), 00:15:01/stopped, RP 4.4.4.4, flags: SJC
  Incoming interface: Tunnell, RPF nbr 10.0.0.13, Mroute
  Outgoing interface list:
    FastEthernet0/1, Forward/Sparse, 00:15:01/00:01:19
(192.168.3.2, 234.1.1.1), 00:04:40/00:02:33, flags: J
  Incoming interface: Null, RPF nbr 0.0_0.0, Mroute
  Outgoing interface list:
    FastEthernet0/1, Forward/Sparse, 00:04:40/00:01:19
Router F#
```


RPF Check OK RPF Check Failure (should never be 0.0.0.0)
Where to From Here.....

- Rendezvous Point Auto-discovery
- High availability

Source Redundancy

RP Redundancy

Fast convergence

- Multicast Security
- Interdomain multicast
- IPv6 multicast

Additional Resources

- Cisco Live Virtual Breakout Sessions https://www.ciscoliveaustralia.com/portal/login.ww
 - –BRKEVT-2923: Optimising Enterprise Network Platform for Video
 - –BRKRST-2311: IPv6 Planning, Deployment and Operations
 - –BRKRST-2301: Enterprise IPv6 Deployments
 - –BRKSPV-1202: Introduction to IPTV and Service Provider Video Technologies
- Cisco Live "Meet the Expert" sessions
- CCO documentation: http://www.cisco.com/go/multicast

Q & A

Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2013 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the **Cisco Live Mobile App**
- By visiting the Cisco Live Mobile Site www.ciscoliveaustralia.com/mobile
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 8 March 12:00pm-2:00pm

communities, and on-demand and live activities throughout the year. Log into your Cisco Live portal and click the "Enter Cisco Live 365" button. www.ciscoliveaustralia.com/portal/login.ww

Don't forget to activate your Cisco Live 365 account for access to all session material,

CISCO

© 2013 Cisco and/or its affiliates. All rights reserved.

