

What You Make Possible

Cisco Nexus 7000 Switch Architecture BRKARC-3470

TOMORROW starts here.

Session Goal

- To provide a thorough understanding of the Cisco Nexus[™] 7000 switching architecture, supervisor, fabric, and I/O module design, packet flows, and key forwarding engine functions
- This session will examine only the latest additions to the Nexus 7000 platform
- This session will not examine NX-OS software architecture or other Nexus platform architectures

What is Nexus 7000?

Data-center class Ethernet switch designed to deliver high-availability, system scale, usability, investment protection

Supervisor Engines

Cisc

Agenda

- **Chassis Architecture**
- Supervisor Engine and I/O Module Architecture
- Forwarding Engine Architecture
- Fabric Architecture
- I/O Module Queuing
- Layer 2 Forwarding
- IP Forwarding
- Classification
- NetFlow
- Conclusion

Nexus 7000 Chassis Family

Nexus 7010

Nexus 7018

Front

Nexus 7009

Image: state state

BRKARC-3470

© 2013 Cisco and/or its affiliates. All rights reserved.

21RU

NX-OS 4.1(2) and later

NX-OS 6.1(2) and later

Nexus 7004 Chassis

- 4 slot chassis 2 payload slots, 2 supervisor slots
- No fabric modules I/O modules connect back-to-back
- Side-to-back airflow
- 3 X 3000W power supplies (AC or DC)
- All FRUs accessed from chassis front
- Supports Sup2 / 2E only
- Supports M1L, M2, F2, F2E modules
 - No support for M1 non-L, F1 modules

Supported in NX-OS release 6.1(2) and later

Key Chassis Components

- Common components:
 - Supervisor Engines
 - I/O Modules
 - Power Supplies (except 7004)
- Chassis-specific components:
 - Fabric Modules
 - Fan Trays

Agenda

- Chassis Architecture
- Supervisor Engine and I/O Module Architecture
- Forwarding Engine Architecture
- Fabric Architecture
- I/O Module Queuing
- Layer 2 Forwarding
- IP Forwarding
- Classification
- NetFlow
- Conclusion

Supervisor Engine 2 / 2E

Next generation supervisors providing control plane and management functions

Supervisor Engine 2	Supervisor Engine 2E
Base performance	High performance
One quad-core 2.1GHz CPU with 12GB DRAM	Two quad-core 2.1GHz CP

Second-generation dedicated central arbiter ASIC

- Controls access to fabric bandwidth via dedicated arbitration path to I/O modules
- Interfaces with I/O modules via 1G switched EOBC

U with 32GB DRAM

N7K-SUP2/N7K-SUP2E

Nexus 7000 I/O Module Families M Series and F Series

M Series – L2/L3/L4 with large forwarding tables and rich feature set

 F Series – High performance, low latency, low power with streamlined feature set

N7K-F248XP-25

BRKARC-3470

© 2013 Cisco and/or its affiliates. All rights reserved.

N7K-M148GS-11L

N7K-M202CF-22L

24-Port 10G M2 I/O Module N7K-M224XP-23L

- 24-port 10G with SFP+ transceivers
- 240G full-duplex fabric connectivity
- Two integrated forwarding engines (120Mpps)
 - Support for "XL" forwarding tables (licensed feature)
- Distributed L3 multicast replication
- 802.1AE LinkSec on all ports

Supported in NX-OS release 6.1(1) and later

IN Series

24-Port 10G M2 I/O Module Architecture N7K-M224XP-23L

Supported in NX-OS release 6.1(1) and later

6-Port 40G M2 I/O Module N7K-M206FQ-23L

- 6-port 40G with QSFP+ transceivers
 - Option to breakout to 4X10G interfaces per 40G port*
- 240G full-duplex fabric connectivity
- Two integrated forwarding engines (120Mpps)
- Support for "XL" forwarding tables (licensed feature)
- Distributed L3 multicast replication
- 802.1AE LinkSec on all ports

* Roadmap feature

IN SOME

6-Port 40G M2 I/O Module Architecture N7K-M206FQ-23L

© 2013 Cisco and/or its affiliates. All rights reserved.

40G Transceivers – QSFP+

- 40GBASE-SR4 supported in 6.1(1)
 - 12-fibre MPO/MTP connector
 - 100m over OM3 MMF, 150m over OM4 MMF
- Other form-factors TBA

MPO Optical Connector

Interior of ribbon fibre cable

40G MPO interface (one row of 12 fibres)

© 2013 Cisco and/or its affiliates. All rights reserved.

BRKARC-3470

Cisco Public

40G 12-strand ribbon fibre (4 middle fibres unused)

2-Port 100G M2 I/O Module N7K-M202CF-22L

- 2-port 100G with CFP transceivers
 - Option to breakout to 2X40G or 10X10G interfaces per 100G port*
- 200G full-duplex fabric connectivity
- Two integrated forwarding engines (120Mpps)
- Support for "XL" forwarding tables (licensed feature)
- Distributed L3 multicast replication
- 802.1AE LinkSec on all ports

* Roadmap feature

Supported in NX-OS release 6.1(1) and later

N7K-M202CF-22L

2-Port 100G M2 I/O Module Architecture N7K-M202CF-22L

© 2013 Cisco and/or its affiliates. All rights reserved.

100G Module Transceivers – 40G and 100G CFP

- 100GBASE-LR4 supported from 6.1(1)
 - SC connector
 - 10km over SMF
- Other form-factors on roadmap
- 40GBASE-SR4 supported from 6.1(2)
 - 12-fibre MPO/MTP connector
 - 100m over MMF
- 40GBASE-LR4 supported from 6.1(2)
 - SC connector
 - 10km over SMF

CFP-40G-SR4

40G and 100G Flow Limits – Internal versus "On the Wire"

Internal to Nexus 7000 System Ingress Modules Destination VQIs Fabrics 10G 10G 40G 40G 100G 1 VQI 1 VQI 4 VQIs 4 VQIs 10 VQIs **Egress Interfaces**

- Each VQI sustains 10-12G traffic flow
- Single-flow limit is ~10G

- Packets split into 66-bit "code words"
- Four code words transmitted in parallel, one on each physical Tx fibre

No per-flow limit imposed – splitting occurs at physical layer

48-Port 1G/10G F2 I/O Module N7K-F248XP-25

- 48-port 1G/10G with SFP/SFP+ transceivers
- 480G full-duplex fabric connectivity
- System-on-chip (SoC)* forwarding engine design
 - 12 independent SoC ASICs
- Layer 2/Layer 3 forwarding with L3/L4 services (ACL/QoS)
- Supports Nexus 2000 (FEX) connections
- FabricPath-capable
- FCoE-capable

strued.

* sometimes called "switch-on-chip"

Supported in NX-OS release 6.0(1) and later

48-Port 1G/10G F2E I/O Modules (Fibre and Copper) N7K-F248XP-25E / N7K-F248XT-25E

- Enhanced version of original F2 I/O module
- Fibre and copper version
- 480G full-duplex fabric connectivity
- Same basic SoC architecture as original F2 with some additional functionality

Supported in NX-OS release 6.1(2) and later

rt Serles

What's Different in F2E?

- Interoperability with M1/M2, in Layer 2 mode*
 - Proxy routing for inter-VLAN/L3 traffic
- LinkSec support*
 - Fibre version: 8 ports
 - Copper version: 48 ports
- Energy Efficient Ethernet (EEE) capability on F2E copper version
- FabricPath learning enhancements
 - No learning on broadcast frames

* Roadmap feature

BRKARC-3470

Energy Efficient Ethernet (IEEE 802.3az)

- IEEE standard for reducing power consumption during idle periods
- Auto-negotiated at Layer 1, like speed and duplex
- Introduces Low Power Idle (LPI) mode for Ethernet ports
 - Systems on both ends of link save power in LPI mode
 - Transparent to upper layer protocols

48-Port 1G/10G F2 / F2E I/O Module Architecture N7K-F248XP-25 / N7K-F248XP-25E / N7K-F248XT-25

F2-Only VDC

Communication between F2-only VDC and M1/M2/F1 VDC must be through external connection

- F2/F2E modules do **not** interoperate with other Nexus 7000 modules*
- Must deploy in an "F2 only" VDC
- Can be default VDC, or any other VDC
 - Use the **limit-resource module-type f2** VDC configuration command
- System with only F2 modules and empty configuration boots with F2-only default VDC automatically

* F2E will interoperate in Layer 2 mode with M1/M2 in a future software release

Agenda

- Chassis Architecture
- Supervisor Engine and I/O Module Architecture
- Forwarding Engine Architecture •
- Fabric Architecture
- I/O Module Queuing
- Layer 2 Forwarding
- IP Forwarding
- Classification
- NetFlow
- Conclusion

M-Series Forwarding Engine Hardware

- Hardware forwarding engine(s) integrated on every I/O module
- 60Mpps per forwarding engine Layer 2 bridging with hardware MAC learning
- 60Mpps per forwarding engine Layer 3 IPv4 and 30Mpps Layer 3 IPv6 unicast
- Layer 3 IPv4 and IPv6 multicast support (SM, SSM, bidir)

- OTV
- IGMP snooping
- RACL/VACL/PACL
- QoS remarking and policing policies
- Policy-based routing (PBR)
- Unicast RPF check and IP source guard
- Ingress and egress NetFlow (full and sampled)

MPLS

Hardware Table	M-Series Modules without Scale License	M-Se with \$
FIB TCAM	128K	
Classification TCAM (ACL/QoS)	64K	
MAC Address Table	128K	
NetFlow Table	512K	

N Series

M-Series Forwarding Engine Architecture

BRKARC-3470

© 2013 Cisco and/or its affiliates. All rights reserved.

M Ceries

F2/F2E Forwarding Engine Hardware

- Each SoC forwarding engine services 4 frontpanel 10G ports (12 SoCs per module)
- 60Mpps per SoC Layer 2 bridging with hardware MAC learning
- 60Mpps per forwarding engine Layer 3 IPv4/ IPv6 unicast
- Layer 3 IPv4 and IPv6 multicast support (SM, SSM)
- IGMP snooping

Hardware Table	Per F2 SoC	Per F2
MAC Address Table	16K	25
FIB TCAM	32K IPv4/16K IPv6	32K IPv
Classification TCAM (ACL/QoS)	16K	19

* Assumes specific configuration to scale SoC resources

- RACL/VACL/PACL
- QoS remarking and policing policies
- Policy-based routing (PBR)
- Unicast RPF check and IP source guard
- FabricPath forwarding
- Ingress sampled NetFlow
- FCoE

Agenda

- Chassis Architecture
- Supervisor Engine and I/O Module Architecture
- Forwarding Engine Architecture
- Fabric Architecture
- I/O Module Queuing
- Layer 2 Forwarding
- IP Forwarding
- Classification
- NetFlow
- Conclusion

Crossbar Switch Fabric Modules

- Provide interconnection of I/O modules in Nexus 7009 / 7010 / 7018 chassis
- Each installed fabric increases available per-payload slot bandwidth
- Two fabric generations available Fabric 1 and Fabric 2

Fabric Module	Supported Chassis	Supported I/O Modules	Per-fabric module bandwidth	Total 5 fa
Fabric 1	7010 / 7018	All	46Gbps per slot	230
Fabric 2	7009 / 7010 / 7018	All	110Gbps per slot	550

- Different I/O modules leverage different amount of fabric bandwidth
- Access to fabric bandwidth controlled using QoS-aware central arbitration with VOQ

BRKARC-3470

© 2013 Cisco and/or its affiliate

bandwidth with bric modules

Gbps per slot

OGbps per slot

N7K-C7018-FAB-1/FAB-2

Multistage Crossbar

Nexus 7000 implements 3-stage crossbar switch fabric

- Stages 1 and 3 on I/O modules
- Stage 2 on fabric modules

© 2013 Cisco and/or its affiliates. All rights reserved.

I/O Module Capacity – Fabric 1

230Gbps

per slot bandwidth

One fabric

Any port can pass traffic to any other port in system

Two fabrics

• 80G M1 module has full bandwidth

Five fabrics

- 240G M2 module limited to 230G per slot
- 480G F2/F2E module limited to 230G per slot

I/O Module Capacity – Fabric 2

Fab2 does NOT make Fab1-based

modules faster!!

550Gbps

per slot bandwidth

One fabric

Any port can pass traffic to any other port in system

Two fabrics

 80G M1 module has full bandwidth

Three fabrics

 240G M2 module has maximum bandwidth

Five fabrics

480G F2 module has maximum bandwidth

BRKARC-3470
What About Nexus 7004?

- Nexus 7004 has no fabric modules
- I/O modules have local fabric with 10 available fabric channels
 - I/O modules connect "back-to-back" via 8 fabric channels
 - Two fabric channels "borrowed" to connect supervisor engines
- Available inter-module bandwidth dependent on installed module types

BRKARC-3470

Arbitration, VOQ and Crossbar Fabric

- Arbitration, VOQ, and fabric combine to provide all necessary infrastructure for packet transport inside switch
- Central arbitration Controls scheduling of traffic into fabric based on fairness, priority, and bandwidth availability at egress ports
- Virtual Output Queues (VOQs) Provide buffering and queuing for ingress-buffered switch architecture
- **Crossbar fabric** Provides dedicated, high-bandwidth interconnects between ingress and egress I/O modules

Central Arbitration

- Access to fabric for unicast traffic controlled using central arbitration
 - Ensures fair access to available bandwidth on each egress port
 - Can provide no-drop service for some traffic classes
- Arbiter ASIC on Supervisor Engine provides central arbitration via dedicated arbitration path to every module
- Arbitration performed on per-destination, per-priority basis – Ensures high priority traffic takes precedence over low priority traffic
- For multidestination traffic, no central arbitration
 - Ingress broadcast, multicast, unknown unicast frames sent unarbitrated

Virtual Output Queues (VOQs)

- VOQs at ingress to fabric provide buffering and queuing for egress destinations reached through the fabric
- Queuing of traffic entering fabric based on destination port (VQI) and packet priority
 - Four levels of priority per destination
- VOQs prevent congested egress ports from blocking ingress traffic destined to other ports
 - Provide independent scheduling for individual egress destinations

VOQ Destinations (VQIs)

- Each egress interface has one or more associated "Virtual Queuing Indexes" (VQIs) or "VOQ Destinations"
- Each VQI has four priority levels / classes
- For 1G / 10G interfaces:
 - One VQI for each 1G or 10G port
- For 40G interfaces:
 - Four VQIs for each 40G port -or-
 - One VQI for each 10G breakout port
- For 100G interfaces:
 - Ten VQIs for each 100G port -or-
 - Four VQIs for each 40G breakout port -or-
 - One VQI for each 10G breakout port

48-port 1G/10G F2/F2E I/O Module

24-port 10G M2 I/O Module

6-port 40G M2 I/O Module

2-port 100G M2 I/O Module

Agenda

- Chassis Architecture
- Supervisor Engine and I/O Module Architecture
- Forwarding Engine Architecture
- Fabric Architecture
- I/O Module Queuing
- Layer 2 Forwarding
- IP Forwarding
- Classification
- NetFlow
- Conclusion

Buffering, Queuing, and Scheduling

- Buffering storing packets in memory
 - Needed to absorb bursts, manage congestion
- Queuing buffering packets according to traffic class
 - Provides dedicated buffer for packets of different priority
- Scheduling controlling the order of transmission of buffered packets
 - Ensures preferential treatment for packets of higher priority and fair treatment for packets of equal priority
- Nexus 7000 uses queuing policies and network-QoS policies to define buffering, queuing, and scheduling behaviour
- Default queuing and network-QoS policies always in effect in absence of any user configuration

I/O Module Buffering Models

- Buffering model varies by I/O module family
 - **M-series modules**: hybrid model combining ingress VOQ-buffered architecture with egress port-buffered architecture
 - **F-series modules**: pure ingress VOQ-buffered architecture
- All configuration through Modular QoS CLI (MQC)
 - Queuing parameters applied using class-maps/policy-maps/service-policies

Hybrid Ingress/Egress Buffered Model M-Series I/O Modules

Ingress port buffer – Manages congestion in ingress forwarding/replication engines only

- Ingress VOQ buffer Manages congestion toward egress destinations (VQIs) over fabric
- Egress VOQ buffer Receives frames from fabric; also buffers multidestination frames
- Egress port buffer Manages congestion at egress interface

BRKARC-3470

Ingress Buffered Model F-Series I/O Modules

Ingress "skid" buffer – Absorbs packets in flight after external flow control asserted

- Ingress VOQ buffer Manages congestion toward egress destinations (VQIs) over fabric
- Egress VOQ buffer Receives frames from fabric; also buffers multidestination frames

BRKARC-3470

v control asserted ations (VQIs) over fabric nultidestination frames

Distributed Buffer Pool

- Ingress-buffered architecture implements large, distributed buffer pool to absorb congestion
- Absorbs congestion at all ingress ports contributing to congestion, leveraging all per-port ingress buffer
- Excess traffic does not consume fabric bandwidth, only to be dropped at egress port

Agenda

- Chassis Architecture
- Supervisor Engine and I/O Module Architecture
- Forwarding Engine Architecture
- Fabric Architecture
- I/O Module Queuing
- Layer 2 Forwarding •
- IP Forwarding
- Classification
- NetFlow
- Conclusion

Layer 2 Forwarding

- Layer 2 forwarding traffic steering based on destination MAC address
- Hardware MAC learning
 - CPU not directly involved in learning
- Forwarding engine(s) on each module have copy of MAC table
 - New learns communicated to other forwarding engines via hardware "flood to fabric" mechanism
 - Software process ensures continuous MAC table sync
- Spanning tree (PVRST or MST), Virtual Port Channel (VPC), or FabricPath ensures loop-free Layer 2 topology

Hardware Layer 2 Forwarding Process

MAC table lookup drives Layer 2 forwarding

- Source MAC and destination MAC lookups performed for each frame, based on {VLAN,MAC} pairs
- Source MAC lookup drives new learns and refreshes aging timers
- Destination MAC lookup dictates outgoing switchport

10G M2 Module Ingress Path

N Conies

Replication Engine Selection on Ingress - 10G M2 Module

Front-panel ports statically mapped to replication engine uplinks

10G M2 Module Egress Path

A Ceries

10G M2 Module Egress VQI Mapping

A Series

40G / 100G M2 Module Ingress Path

Replication Engine Selection on Ingress - 40G / 100G M2 Module

- Hash Result generated by Port ASIC selects replication engine uplink
- Hash input uses Layer 3 + Layer 4 information

40G / 100G M2 Module Egress Path

A Conico

BRKARC-3470

© 2013 Cisco and/or its affiliates. All rights reserved.

Agenda

- Chassis Architecture
- Supervisor Engine and I/O Module Architecture
- Forwarding Engine Architecture
- Fabric Architecture
- I/O Module Queuing
- Layer 2 Forwarding
- IP Forwarding
- Classification
- NetFlow
- Conclusion

IP Forwarding

- Nexus 7000 decouples control plane and data plane
- Forwarding tables built on control plane using routing protocols or static configuration
 - -OSPF, EIGRP, IS-IS, RIP, BGP for dynamic routing
- Tables downloaded to forwarding engine hardware for data plane forwarding
 - -FIB TCAM contains IP prefixes
 - -Adjacency table contains next-hop information

Hardware IP Forwarding Process

- FIB TCAM lookup based on destination prefix (longest-match)
- FIB "hit" returns adjacency, adjacency contains rewrite information (nexthop)
- Pipelined forwarding engine architecture also performs ACL, QoS, and NetFlow lookups, affecting final forwarding result

IPv4 FIB TCAM Lookup (M1/M2)

IPv4 FIB TCAM Lookup (F2 / F2E)

ECMP Load Sharing

- Up to 16 hardware load-sharing paths per prefix
- Use maximum-paths command in routing protocols to control number of load-sharing paths
- Load-sharing is per-IP flow
- Configure load-sharing hash options with global ip load-sharing command:
 - Source and Destination IP addresses
 - Source and Destination IP addresses plus L4 ports (default)
 - Destination IP address and L4 port
- Additional randomised number added to hash prevents polarisation
 - Automatically generated or user configurable value

BRKARC-3470

© 2013 Cisco and/or its affiliates. All rights reserved.

Agenda

- Chassis Architecture
- Supervisor Engine and I/O Module Architecture
- Forwarding Engine Architecture
- Fabric Architecture
- I/O Module Queuing
- Layer 2 Forwarding
- IP Forwarding
- Classification
- NetFlow
- Conclusion

What is Classification?

- Matching packets
 - Layer 2, Layer 3, and/or Layer 4 information
- Used to decide whether to apply a particular policy to a packet – Enforce security, QoS, or other policies
- Some examples:
 - Match TCP/UDP source/destination port numbers to enforce security policy
 - Match destination IP addresses to apply policy-based routing (PBR)
 - Match 5-tuple to apply marking policy
 - Match protocol-type to apply Control Plane Policing (CoPP)
 - etc.

CL TCAM Lookup – ACL

© 2013 Cisco and/or its affiliates. All rights reserved.

Security ACL

ip access-list example permit ip any host 10.1.2.100 deny ip any host 10.1.68.44
CL TCAM Lookup – QoS

QoS Classification ACLs

ip access-list police permit ip any 10.3.3.0/24 permit ip any 10.4.12.0/24 ip access-list remark-dscp-32 permit udp 10.1.1.0/24 any ip access-list remark-dscp-40

Atomic Policy Programming

- Avoids packet loss during policy updates
- Enabled by default
- Atomic programming process:
 - Program new policy in free/available CL TCAM entries
 - Enable new policy by swapping the ACL label on interface
 - Free CL TCAM resources used by previous policy

Atomic Policy Programming Cont.

- To support atomic programming, software reserves 50% of available TCAM
- If insufficient resources available, system returns an error and no modifications made in hardware
 - Failed to complete Verification: Tcam will be over used, please turn off atomic update

Disable with **no platform access-list update atomic**

- Disabling may be necessary for very large ACL configurations
- Atomic programming attempted but not mandatory
- User can disable atomic programming and perform update non-atomically (assuming ACL fits in CL TCAM)
 - "Default" ACL result (deny by default) returned for duration of reprogramming
 - Use [no] hardware access-list update default-result permit to control default result

Classification Configuration Sessions

Two ways to configure ACL/QoS policies:

- Normal configuration mode (config terminal)
 - Configuration applied immediately line by line
 - Recommended only for small ACL/QoS configurations, or non-data-plane ACL configuration
- Session config mode (config session)
 - Configuration only applied after **commit** command issued
 - Recommended for large ACL/QoS configurations
- Config session mode also provides **verify** facility to "dry-run" the configuration against available system resources
 - No change to existing hardware configuration after verification (regardless of verification result)

Agenda

- Chassis Architecture
- Supervisor Engine and I/O Module Architecture
- Forwarding Engine Architecture
- Fabric Architecture
- I/O Module Queuing
- Layer 2 Forwarding
- IP Forwarding
- Classification
- NetFlow
- Conclusion

NetFlow on Nexus 7000

- NetFlow collects flow data for packets traversing the switch
- Each module maintains independent NetFlow table

	M1 / M2	F2 / F2E
Per-interface NetFlow	Yes	Yes
NetFlow direction	Ingress/Egress	Ingress only
Full NetFlow	Yes	No
Sampled NetFlow	Yes	Yes
Bridged NetFlow	Yes	Yes
Hardware Cache	Yes	No
Software Cache	No	Yes
Hardware Cache Size	512K entries per forwarding engine	N/A
NDE (v5/v9)	Yes	Yes

Full vs. Sampled NetFlow

- NetFlow collects full or sampled flow data
- Full NetFlow: Accounts for every packet of every flow on interface
 - Available on M-Series modules only
 - Flow data collection up to capacity of hardware NetFlow table
- Sampled NetFlow: Accounts for M in N packets on interface
 - Available on both M-Series (ingress/egress) and F2/F2E (ingress only)
 - M-Series: Flow data collection up to capacity of hardware NetFlow table
 - F2/F2E: Flow data collection for up to ~1000pps per module

Sampled NetFlow Details

- Random packet-based sampling
- M:N sampling: Out of N consecutive packets, select M consecutive packets and account only for those flows
- On M-Series, sampled packets create hardware NetFlow table entry
- On F2/F2E, sampled packets sent to LC CPU via module inband
 - Rate limited to ~1000pps per module
- Software multiplies configured sampler rate by 100 on F2/F2E modules
 - Example: when using 1 out-of 100 sampler on F2/F2E interface, sampled rate becomes 1:10000

NetFlow on M1/M2 Modules

© 2013 Cisco and/or its affiliates. All rights reserved.

Cisco Public

1 Series

Agenda

- Chassis Architecture
- Supervisor Engine and I/O Module Architecture
- Forwarding Engine Architecture
- Fabric Architecture
- I/O Module Queuing
- Layer 2 Forwarding
- IP Forwarding
- Classification
- NetFlow
- Conclusion

Nexus 7000 Architecture Summary

Control plane protocols, system and network management

Supervisor Engines

Fabrics

High-bandwidth fabric to interconnect I/O modules and provide investment protection

Conclusion

- You should now have a thorough understanding of the Nexus 7000 switching architecture, I/O module design, packet flows, and key forwarding engine functions...
- Any questions?

Q & A

Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2013 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the **Cisco Live Mobile App**
- By visiting the Cisco Live Mobile Site www.ciscoliveaustralia.com/mobile
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 8 March 12:00pm-2:00pm

communities, and on-demand and live activities throughout the year. Log into your Cisco Live portal and click the "Enter Cisco Live 365" button. www.ciscoliveaustralia.com/portal/login.ww

Don't forget to activate your Cisco Live 365 account for access to all session material,

CISCO

