



BRKRST-2042

Stephen Lynn

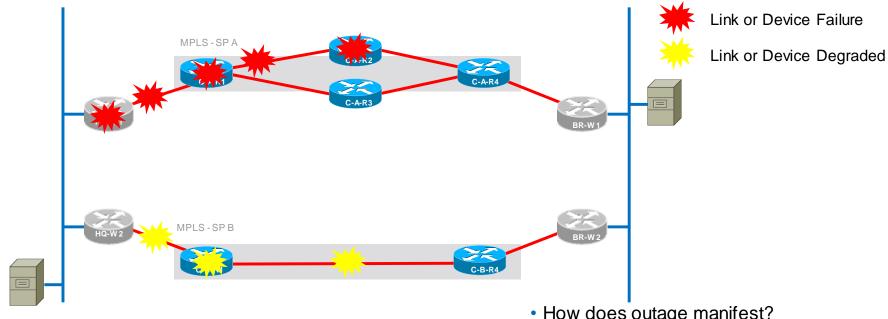
Consulting Systems Architect



# Agenda

- Introduction
- Cisco IOS and IP Routing
- Convergence Techniques
- Design and Deployment
- Final Wrap Up






#### Goals

- Design a WAN to efficiently utilise available bandwidth
- Design a WAN to dynamically respond to all types of disruptions
- Leverage most effective design techniques that meet the design requirements



#### Where Can Outages Occur?



- How does outage manifest?
- How quickly can network detect?
- How long is bidirectional reconvergence?



#### Session Scope

- What methods are used for path selection and packet forwarding
- How does the network detect outages
- Focus on network survivability and effective utilisation rather than sub-second convergence
- Does not address "zero loss" considerations



# Agenda

- Introduction
- Cisco IOS and IP Routing
  - Multiple Links/Multiple Paths
  - Load Sharing
- Convergence Techniques
- Design and Deployment
- Final Wrap Up





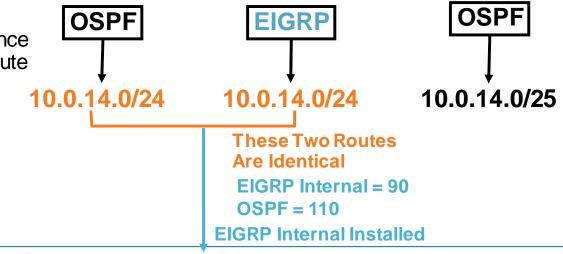
#### Routing Table Basics

```
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
   D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
   N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
   E1 - OSPF external type 1, E2 - OSPF external type 2
   i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
   * - candidate default, U - per-user static route, o - ODR
   P - periodic downloaded static route
D*EX
      0.0.0.0/0 [170/3328] via 10.4.128.1, 21:44:37, Port-channel1
      10.0.0.0/8 is variably subnetted, 27 subnets, 6 masks
         10.4.128.0/30 is directly connected, Port-channel1
         10.4.128.8/30 [90/1792] via 10.4.128.1, 21:44:37, Port-channel1
         10.4.128.128/26 [90/3072] via 10.4.128.1, 21:44:37, Port-channell
         10.4.128.240/32 [90/129536] via 10.4.128.1, 21:44:37, Port-channel1
         10.4.128.241/32 is directly connected, Loopback0
         10.4.128.244/32 [90/129792] via 10.4.128.1, 21:44:37, Port-channel1
         10.4.142.0/29 is directly connected, GigabitEthernet0/0/4
         10.4.142.32/30 [20/0] via 10.4.142.2, 21:44:01
         10.4.142.144/30 [20/0] via 10.4.142.2, 21:44:01
         10.4.143.0/29 [200/0] via 10.4.128.242, 21:44:01
```

#### **Administrative Distance**

- The distance command is used to configure a rating of the trustworthiness of a routing information source, such as an individual router or a group of routers
- Numerically, an administrative distance is a positive integer from 1 to 255. In general, the higher the value, the lower the trust rating
- An administrative distance of 255 means the routing information source cannot be trusted at all and should be ignored

|                        | Default  |
|------------------------|----------|
| Route Source           | Distance |
| Connected<br>Interface | 0        |
| Static Route           | 1        |
| EIGRP Summary<br>Route | 5        |
| BGP external (eBGP)    | 20       |
| EIGRP internal         | 90       |
| OSPF                   | 110      |
| IS-IS                  | 115      |
| RIP                    | 120      |
| EIGRP External         | 170      |
| BGP Internal (iBGP)    | 200      |
| Unknown                | 255      |

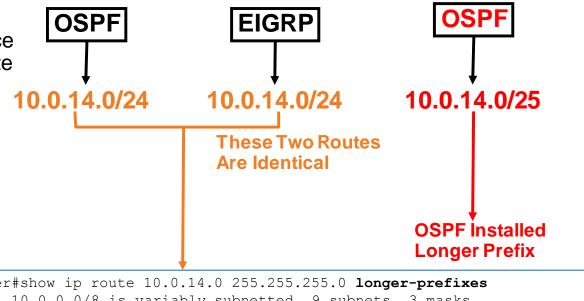



#### **Route Selection**

 How is administrative distance used to determine which route should be installed?

 Only identical routes are compared

- Identical prefixes with different prefix lengths are not the same route
- The route from the protocol with the lower administrative distance is installed




```
router#show ip route 10.0.14.0 255.255.255.0
Routing entry for 10.0.14.0/24
  Known via "eigrp 1", distance 90, metric 307200, type internal
  Redistributing via eigrp 1
  Last update from 10.0.121.2 on Ethernet0/1, 00:01:32 ago
  Routing Descriptor Blocks:
  * 10.0.121.2, from 10.0.121.2, 00:01:32 ago, via Ethernet0/1
      Route metric is 307200, traffic share count is 1
      Total delay is 2000 microseconds, minimum bandwidth is 10000 Kbit
      Reliability 255/255, minimum MTU 1500 bytes
      Loading 1/255, Hops 1
```

#### **Route Selection**

 How is administrative distance used to determine which route should be installed?

- Only identical routes are compared
  - Identical prefixes with different prefix lengths are not the same route
- The route from the protocol with the lower administrative distance is installed



#### More Specific OSPF Override EIGRP



# Agenda

- Introduction
- Cisco IOS and IP Routing
  - Multiple Links/Multiple Paths
  - Load Sharing
- Convergence Techniques
- Design and Deployment
- Final Wrap Up





#### **Load Sharing**

- Assume the same routing process attempts to install two routes for the same destination in the RIB
- The routing process may allow the second route to be installed based on its own rules

|               | OSPF                                                                                       | IS-IS                            | EIGRP                                                                |  |  |
|---------------|--------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------|--|--|
| Route Cost    | Must be equal to installed route                                                           | Must be equal to installed route | Must be less than the variance times the lowest cost installed route |  |  |
| Maximum Paths | Must be fewer than <i>maximum-paths</i> configured under the routing process (default = 4) |                                  |                                                                      |  |  |

Note: BGP default value for maximum-paths = 1



# **CEF Load Sharing**

| Per-Session                                                            | Per-Packet                                                              |
|------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Default behaviour of IOS                                               | Requires "ip load-sharing per-packet" interface configuration           |
| Per-flow using source/destination                                      | Per-packet using round-robin method                                     |
| Packets for a given source/destination session will take the same path | Packets for a given source/destination session may take different paths |
| More effective as the number of source to destination pairs increase   | Ensures traffic is more evenly distributed over multiple paths          |
| Ensures that traffic for a given session arrives in order              | Potential for packets to arrive out of sequence                         |



#### **Load Sharing**

```
router#show ip route 192.168.239.0
Routing entry for 192.168.239.0/24
  Known via "eigrp 100", distance 170, metric 3072256, type external
  Redistributing via eigrp 100
  Last update from 192.168.245.11 on Serial3/1, 00:18:17 ago
  Routing Descriptor Blocks:
  * 192.168.246.10, from 192.168.246.10, 00:18:17 ago, via Serial3/0
      Route metric is 3072256, traffic share count is 1
    192.168.245.11, from 192.168.245.11, 00:18:17 ago, via Serial3/1
      Route metric is 3072256, traffic share count is 1
                                     The Traffic Share Count Is Critical to
                                     Understanding the Actual Load Sharing of
                                     Packets Using These Two Routes
```

3072256/3072256 = 1

# Load Sharing – with EIGRP Variance

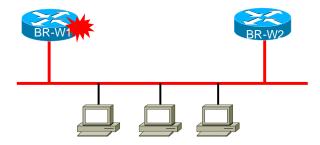
```
router#show ip route 192.168.239.0
Routing entry for 192.168.239.0/24
  Known via "eigrp 100", distance 170, metric 3072256, type external
  Redistributing via eigrp 100
  Last update from 192.168.245.11 on Serial3/1, 00:18:17 ago
  Routing Descriptor Blocks:
  * 192.168.246.10, from 192.168.246.10, 00:18:17 ago, via Serial3/0
      Route metric is 1536128, traffic share count is 2
    192.168.245.11, from 192.168.245.11, 00:18:17 ago, via Serial3/1
      Route metric is 3072256, traffic share count is 1
                        If the Lower Metric Is Less than the Second
                        Metric, the Traffic Share Count Will Be
                        Something Other than 1 (EIGRP with
                        Variance Configured)
                        3072256/3072256 = 1
                        3072256/1536128 = 2
```

# Load Sharing – with eBGP dmzlink-bw

```
router#show ip route 192.168.239.0
Routing entry for 192.168.239.0/24
  Known via "bgp 1", distance 20, metric 0
  Tag 2, type external
  Last update from 10.0.122.2 00:00:16 ago
  Routing Descriptor Blocks:
    10.0.122.2, from 10.0.122.2, 00:00:16 ago
      Route metric is 0, traffic share count is 1
  * 10.0.121.2, from 10.0.121.2, 00:00:16 ago
      Route metric is 0, traffic share count is 2
      . . . .
router#show ip bgp 192.168.239.0
BGP routing table entry for 192.168.239.0/24, version 9
Paths: (2 available, best #2, table default)
                                        2x Faster Link Gets 2 Flows vs. 1 Flow
Multipath: eBGP
    10.0.122.2 from 10.0.122.2 (10.0.0.2)
      Origin IGP, metric 0. localpref 100, valid, external, multipath(oldest)
      DMZ-Link Bw 312 kbytes
      rx pathid: 0, tx pathid: 0
    10.0.121.2 from 10.0.121.2 (10.0.0.2)
      Origin IGP, metric 0, localpref 100, valid, external, multipath, best
      DMZ-Link Bw 625 kbytes
      rx pathid: 0, tx pathid: 0x0
```

Only Available with eBGP Neighbors

# Agenda


- Introduction
- Cisco IOS and IP Routing
- Convergence Techniques
  - First Hop Redundancy Protocols
  - Routing Protocols
  - DDR and Static Routing
  - Performance Routing
- Design and Deployment
- Final Wrap Up





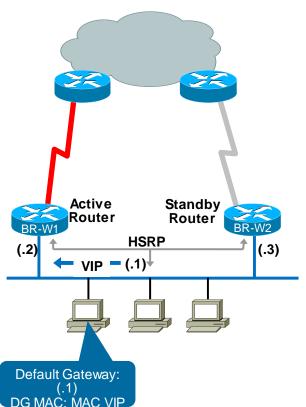
# First Hop Redundancy Protocols (FHRP)

Failure Protection for the First Hop IP Router



- Hot Standby Router Protocol (HSRP)
- Virtual Router Redundancy Protocol (VRRP)
- Gateway Load Balancing Protocol (GLBP)




19

#### **Drivers for FHRPs**

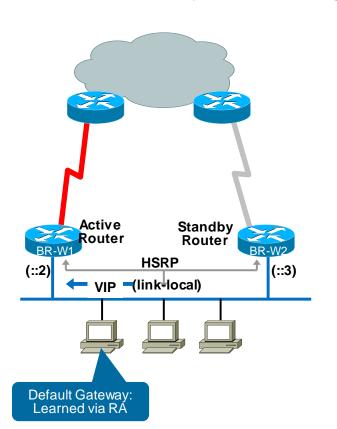
- Provide routing redundancy for access layer
  - How to handle failover when end-hosts have only a single IP default gateway and cached ARP entry
- Provide routing redundancy for devices that depend on static routing
  - Some firewalls do not support dynamic routing
- Independent of routing protocols
  - Works with any routing protocol and static routing
- Capable of providing sub-second failover
- Provides load sharing capabilities (GLBP) transparent to end host



#### Hot Standby Routing Protocol (HSRP)



```
BR-W1#
interface FastEthernet0/0
ip address 10.1.2.2 255.255.255.0
standby 1 priority 110
standby 1 preempt
standby 1 ip 10.1.2.1
```


```
BR-W1# show standby brief
Interface Grp Prio P State Active Standby Virtual IP
Fa0/0 1 110 P Active local 10.1.2.3 10.1.2.1
```

```
BR-W2#
interface FastEthernet0/0
ip address 10.1.2.3 255.255.255.0
standby 1 priority 105
standby 1 preempt
standby 1 ip 10.1.2.1
```

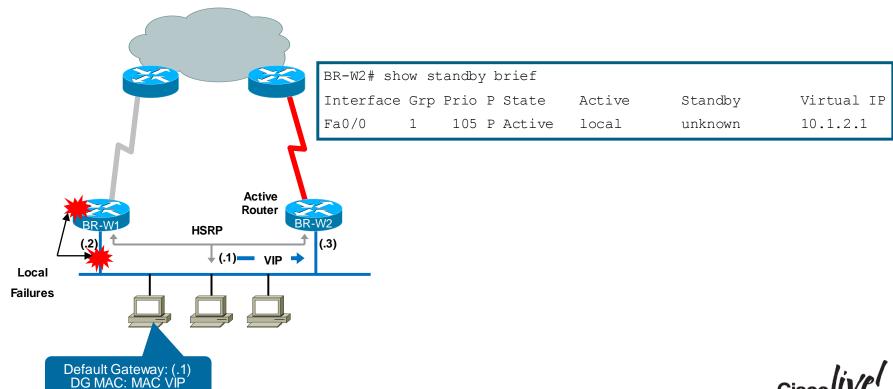
```
BR-W2# show standby brief

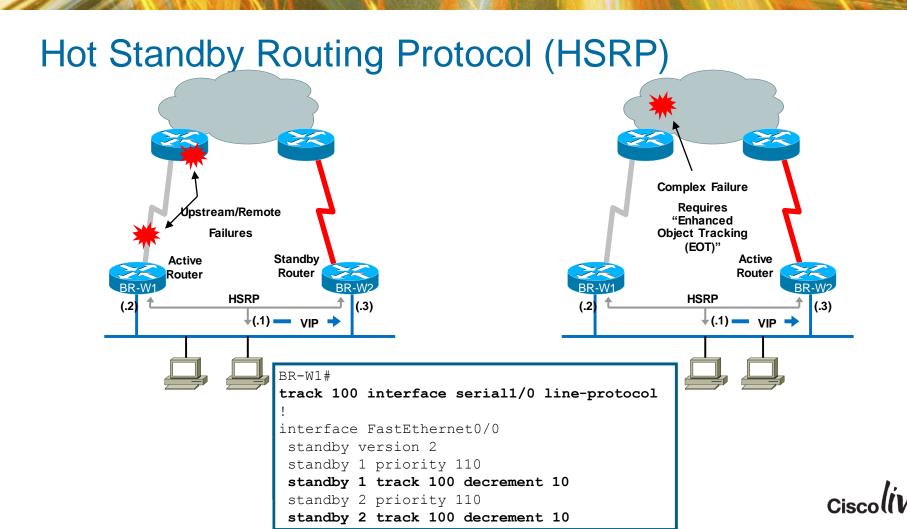
Interface Grp Prio P State Active Standby Virtual IP
Fa0/0 1 105 P Standby 10.1.2.2 local 10.1.2.1
```

#### Hot Standby Routing Protocol (HSRP) IPv6

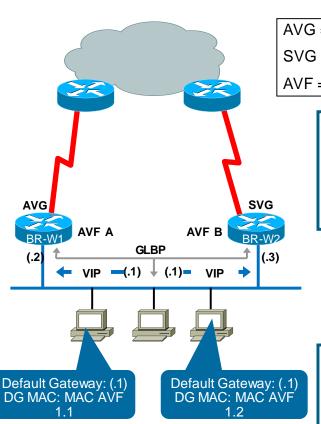


```
BR-W1#
interface FastEthernet0/0
ipv6 address 2001:DB8:C15:C002::2/64
standby version 2
standby 2 priority 110
standby 2 preempt
standby 2 ipv6 autoconfig
```


HSRP—Global IPv6 Addresses 12.2(33)SXI4 15.0(1)SY 15.3(2)T 15.3(1)S 15.1(1)SG


```
BR-W1# show standby brief
Interface Grp Prio P State Active Standby Virtual IP
Fa0/0 2 110 P Active local FE80::A8BB:CCFF:FE00:600
FE80::5:73FF:FEA0
```

```
BR-W2#
interface FastEthernet0/0
ipv6 address 2001:DB8:C15:C002::3/64
standby version 2
standby 2 priority 105
standby 2 preempt
standby 2 ipv6 autoconfig
```


```
BR-W2# show standby brief
Interface Grp Prio P State Active Standby Virtual IP
Fa0/0 2 105 P Standby FE80::A8BB:CCFF:FE00:500
local FE80::5:73FF:FEA0
:2
```

#### Hot Standby Routing Protocol (HSRP)





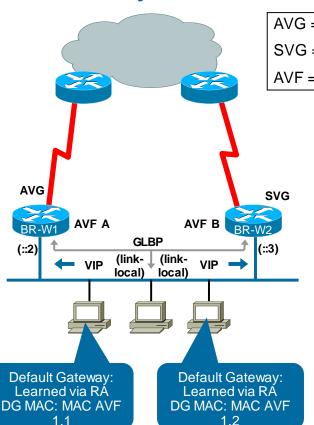
# Gateway Load Balancing Protocol (GLBP)



```
AVG = Active Virtual Gateway
```

SVG = Standby Virtual Gateway

AVF = Active Virtual Forwarder


```
interface FastEthernet0/1
ip address 10.1.2.2 255.255.255.0
glbp 1 priority 110
glbp 1 preempt
glbp 1 ip 10.1.2.1
glbp 1 load-balancing round-robin
```

| BR-W1# show glbp brief |     |     |     |        |                |               |          |  |
|------------------------|-----|-----|-----|--------|----------------|---------------|----------|--|
| Interface<br>Router    | Grp | Fwd | Pri | State  | Address        | Active Router | Standby  |  |
| Fa0/1                  | 1   | _   | 110 | Active | 10.1.2.1       | local         | 10.1.2.3 |  |
| Fa0/1                  | 1   | 1   | -   | Active | 0007.b400.0101 | local         | -        |  |
| Fa0/1                  | 1   | 2   | _   | Listen | 0007.b400.0102 | 10.1.2.3      | _        |  |

interface FastEthernet0/1
ip address 10.1.2.3 255.255.255.0
glbp 1 priority 105
glbp 1 preempt
glbp 1 ip 10.1.2.1
glbp 1 load-balancing round-robin

| BR-W2# sho          | w glb | p br: | ief |         |                |               |         |
|---------------------|-------|-------|-----|---------|----------------|---------------|---------|
| Interface<br>Router | Grp   | Fwd   | Pri | State   | Address        | Active Router | Standby |
| Fa0/1               | 1     | _     | 105 | Standby | 10.1.2.1       | 10.1.2.2      | local   |
| Fa0/1               | 1     | 1     | -   | Listen  | 0007.b400.0101 | 10.1.2.2      | -       |
| Fa0/1 25            | 1     | 2     | _   | Active  | 0007.b400.0102 | local         | -       |

#### Gateway Load Balancing Protocol (GLBP) IPv6



```
AVG = Active Virtual Gateway
```

SVG = Standby Virtual Gateway

AVF = Active Virtual Forwarder

```
interface FastEthernet0/1
 ipv6 address 2001:DB8:C15:C002::2/64
 glbp 2 priority 110
 glbp 2 preempt
 glbp 2 ipv6 autoconfig
 glbp 2 load-balancing round-robin
```

```
BR-W1# show glbp brief
Interface
           Grp Fwd Pri State
                                 Address
                                                  Active Router
                                                                 Standby Router
Fa0/1
                    110 Active
                                  FE80::7:B4FF:FE00:200
                                                                 FE80::A8BB:CCF
                                                  local
F:FE00:600
Fa0/1
                        Listen
                                  0007.b400.0201
                                                  FE80::A8BB:CCFF:FE00:600
Fa0/1
                                  0007.b400.0202 local
                        Active
```

Configuration of static link-local address is supported

interface FastEthernet0/1 ipv6 address 2001:DB8:C15:C002::3/64 glbp 2 priority 105 glbp 2 preempt glbp 2 ipv6 autoconfig glbp 2 load-balancing round-robin

| BR-W2# <b>show glbp brief</b> |     |     |     |         |                  |           |         |          |        |
|-------------------------------|-----|-----|-----|---------|------------------|-----------|---------|----------|--------|
| Interface                     | Grp | Fwd | Pri | State   | Address          | Active Ro | outer   | Standby  | Router |
| Fa0/1                         | 2   | -   | 105 | Standby | FE80::7:B4FF:FE0 | 00:200    |         |          |        |
|                               |     |     |     |         |                  | FE80::A81 | BB:CCFF | :FE00:50 | 0      |
|                               |     |     |     |         |                  |           |         | local    |        |
| Fa0/1                         | 2   | 1   | _   | Active  | 0007.b400.0201   | local     |         |          |        |
| Fa0/1                         | 2   | 2   | -   | Listen  | 0007.b400.0202   | FE80::A8E | BB:CCFF | :FE00:50 | 0      |

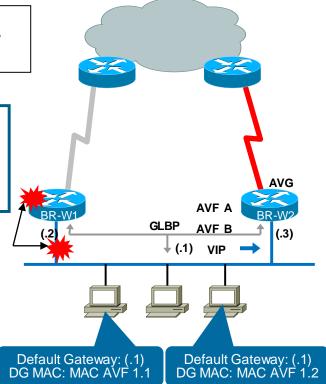
Gateway Load Balancing Protocol (GLBP)

AVG = Active Virtual Gateway

SVG = Standby Virtual Gateway

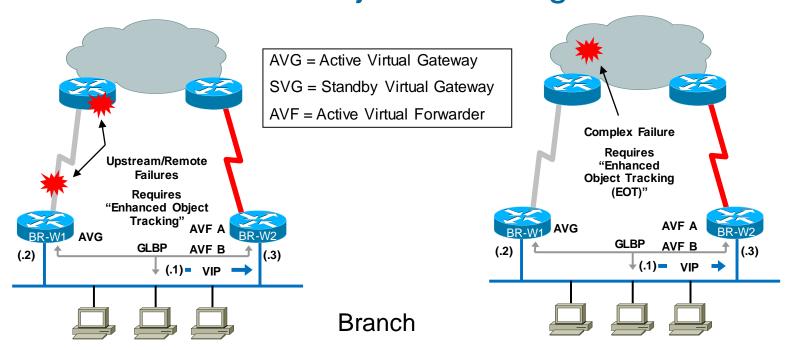
AVF = Active Virtual Forwarder

#### BR-W2#


\*Mar 31 17:04:27: %GLBP-6-STATECHANGE: FastEth0/1 Grp 1 state Standby -> Active

\*Mar 31 17:04:27 %GLBP-6-FWDSTATECHANGE: FastEth0/1 Grp 1 Fwd 1 state

Listen -> Active


Local Failures

#### BR-W2# show glbp brief Fwd Pri State Address Active Rtr Standby Rtr Interface Fa0/1 105 Active 10.1.2.1 local unknown Fa0/1 Active 0007.b400.0101 local Fa0/1 Active 0007.b400.0102 local





#### GLBP with Enhanced Object Tracking





#### **Enhanced Object Tracking**

| Track Options      | Syntax                                                           |
|--------------------|------------------------------------------------------------------|
| Line-Protocol      | track object-number interface type number line-protocol          |
| State of Interface | track 1 interface serial 1/1 line-protocol                       |
| IP-Routing State   | track object-number interface type number ip routing             |
| of Interface       | track 2 interface ethernet 1/0 ip routing                        |
| IP-Route           | track object-number ip route IP-Addr/Prefix-len reachability     |
| Reachability       | track 3 ip route 10.16.0.0/16 reachability                       |
| Threshold* of      | track object-number ip route IP-Addr/Prefix-len metric threshold |
| IP-Route Metrics   | track 4 ip route 10.16.0.0/16 metric threshold                   |

IPv6 Support added in 15.3(3)S 15.4(1)T

Router# show track 100 Track 100 Interface Serial1/1 line-protocol Line protocol is Up 1 change, last change 00:00:05 Tracked by: GLBP FastEthernet0/1 1

Router# show track 103 Track 103 IP route 10.16.0.0 255.255.0.0 reachability Reachability is Up (EIGRP) 1 change, last change 00:02:04 First-hop interface is Ethernet0/1 Tracked by: GLBP FastEthernet0/1 1



<sup>\*</sup> EIGRP, OSPF, BGP, Static Thresholds Are Scaled to Range of (0 – 255)

#### Enhanced Object Tracking – IP SLA

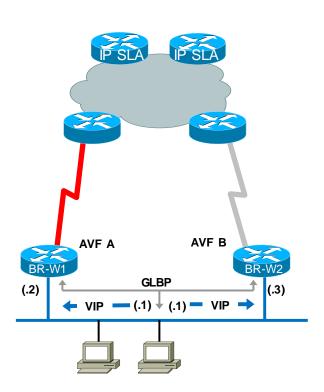
| Track Options                      | Syntax                                                                                       |
|------------------------------------|----------------------------------------------------------------------------------------------|
| IP SLAs Operation                  | <pre>track object-number ip sla type number state track 5 ip sla 4 state</pre>               |
| Reachability of an IP<br>SLAs Host | <pre>track object-number ip sla type number reachability track 6 ip sla 4 reachability</pre> |

#### Types of IP SLA Probes: path-jitter dhcp http icmp-echo<sup>1</sup> tcp-connect1 dns icmp-jitter udp-echo1 ethernet udp-jitter1 frame-relay mpls path-echo ftp **VoIP**

30



#### IP SLA – UDP-Jitter Probe


```
ip sla operation-number
  type udp-jitter [hostname | ip-address] port-number [num-packets
number-of-packets] [interval inter-packet-interval]
frequency seconds
request-data-size bytes
```

| UDP Jitter Operation Parameter                            | Default Value |
|-----------------------------------------------------------|---------------|
| Number of Packets (N)                                     | 10 Packets    |
| Payload Size per Packet (S)                               | 32 Bytes      |
| Time Between Packets, in Milliseconds (T)                 | 20 ms         |
| Elapsed Time Before the Operation Repeats, in Seconds (F) | 60 Seconds    |



### **Enhanced Object Tracking (EOT)**

#### Tracking IP SLA



```
ip sla 100
  icmp-echo 10.100.100.100 source-ip 10.1.2.2
  timeout 100
  frequency 10
ip sla schedule 100 life forever start-time now
ip sla 200
  icmp-echo 10.100.200.100 source-ip 10.1.2.2
  timeout 100
  frequency 10
ip sla schedule 200 life forever start-time now
ip route 10.100.100.100 255.255.255.255 192.168.101.9
ip route 10.100.200.100 255.255.255.255 192.168.101.9
```

```
BR-W1# show ip sla statistics
IPSLA operation id: 100
Latest RTT: 1 milliseconds
Latest operation start time: *04:42:11.444 UTC Tue Feb 17 2009
Latest operation return code: OK
Number of successes: 46
Number of failures: 0
Operation time to live: Forever
IPSLA operation id: 200
Latest RTT: 1 milliseconds
Latest operation start time: *04:42:11.356 UTC Tue Feb 17 2009
Latest operation return code: OK
Number of successes: 24
Number of failures: 0
Operation time to live: Forever
```

#### **Enhanced Object Tracking**

Tracking IP SLA

```
BR-W1#
track 100 ip sla 100 reachability
track 200 ip sla 200 reachability
track 1 list boolean or
 object 100
object 200
interface FastEtherner()/1
 ip address 10.1.2.2 255.255.255.0
 glbp 1 ip 10.1.2.1
 glbp 1 priority 110
 glbp 1 preempt
 glbp 1 weighting 120 lower 100
 glbp 1 load-balancing weighted
 glbp 1 weighting track 1 decrement 30
                                    AVF A
                                                  AVF B
                                            GLBP
                             (.2)
                                   BRKRST-2042
                © 2015 Cisco and/or its affiliates. All rights reserved.
```

```
BR-W1# show glbp
FastEthernet0/1 - Group 1
 State is Active
   1 state change, last state change 00:09:59
 Virtual TP address is 10.1.2.1
 Hello time 3 sec, hold time 10 sec
   Next hello sent in 2.336 secs
 Redirect time 600 sec, forwarder timeout 14400 sec
 Preemption enabled, min delay 0 sec
 Active is local
 Standby is 10.1.2.3, priority 105 (expires in 7.808 sec)
 Priority 110 (configured)
 Weighting 120 (configured 120), thresholds: lower 100,
upper 120
   Track object 1 state Up decrement 30
 Load balancing: weighted
 Group members:
    aabb.cc00.0110 (10.1.2.2) local
    aabb.cc00.0410 (10.1.2.3)
 There are 2 forwarders (1 active)
 Forwarder 1
    State is Active
    <SNTP>
 Forwarder 2
    State is Listen
    <SNTP>
```

#### **Enhanced Object Tracking**

BR-W1#

#### Composite Failure

\*Feb 17 05:17:25: %TRACKING-5-STATE: 100 ip sla 100 state Up->Down \*Feb 17 05:17:25: %TRACKING-5-STATE: 200 ip sla 200 state Up->Down \*Feb 17 05:17:26: %TRACKING-5-STATE: 1 list boolean or Up->Down \*Feb 17 05:17:38: %GLBP-6-FWDSTATECHANGE: FastEth0/1 Grp 1 Fwd 1 state Active -> Listen

Unable to Reach

Either

IP SLA

Responder

**GLBP** 

AVG

AVF A

↓(.1) — VIP →

**BR-W1 Remains** Active Virtual Gateway (AVG)

**BR-W2 Becomes** Active Virtual Forwarder (AVF) for both A and B

BR-W2#show glbp FastEthernet0/1 - Group 1 State is standby 1 state change last state change 00:28:16 Virtual IP address is 10.1.2.1 Wello time 3 sec, hold time 10 sec Next hello sent in 1.856 secs Redirect time 600 sec, forwarder timeout 14400 sec Preemption enabled, min delay 0 sec Active is 10.1.2.2, priority 110 (expires in 10.400 sec) Standby is local Priority 105 (configured) Weighting 120 (configured 120), thresholds: lower 100, upper 120 Track object 1 state Up decrement 30 Load balancing: weighted Group members: (.2)aabb.cc00.0110 (10.1.2.2) aabb.cc00.0410 (10.1.2.3) local There are 2 forwarders (2 active) Ferwarder 1 State is Active <SNIP> Forwarder 2 State is Active

### Agenda

- Introduction
- Cisco IOS and IP Routing
- Convergence Techniques
  - First Hop Redundancy Protocols
  - Routing Protocols
  - DDR and Static Routing
  - Performance Routing
- Design and Deployment
- Final Wrap Up







# **Routing Protocol Timers**

|                                                                                  | Keepalive (B)<br>Hello (E,I,O)<br>Update (R) | Invalid (R) | Holdtime (B,E,I)<br>Dead (O)<br>Holddown (R) | Flush (R) |
|----------------------------------------------------------------------------------|----------------------------------------------|-------------|----------------------------------------------|-----------|
| BGP                                                                              | 60                                           |             | 180                                          |           |
| EIGRP<br>( <t1)< td=""><td>5 (60)</td><td></td><td>15 (180)</td><td></td></t1)<> | 5 (60)                                       |             | 15 (180)                                     |           |
| IS-IS<br>(DIS)                                                                   | 10 (3.333)                                   |             | 30 (10)                                      |           |
| OSPF<br>(NBMA)                                                                   | 10 (30)                                      |             | 40 (120)                                     |           |
| RIP/RIPv2                                                                        | 30                                           | 180         | 180                                          | 240       |

Note: Cisco Default Values



### Routing Protocol Neighbour Behaviour

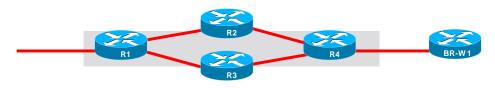




#### **Recovery Times by Protocol**

|                 | Link Down          | Link Up   | Link Up        | Link Up  |
|-----------------|--------------------|-----------|----------------|----------|
|                 | Line Protocol Down | Loss 100% | Neighbour Down | Loss ~5% |
| BGP             | ~ 1 s              | 180       | 180            | Never    |
| EIGRP<br>(< T1) | ~ 1s               | 15 (180)  | 15 (180)       | Never    |
| IS-IS (DIS)     | ~ 1s               | 30 (10)   | 30 (10)        | Never    |
| OSPF<br>(NBMA)  | ~ 1s               | 40 (120)  | 40 (120)       | Never    |
| RIP/RIPv2       | ~ 1s               | 240       | 240            | Never    |

Note: Using Cisco Default Values


BRKRST-2042

© 2015 Cisco and/or its affiliates. All rights reserved.



### Routing Protocol Neighbour Behaviour

#### Adjust Hello Timers



#### R4# show ip bgp vpnv4 vrf cisco neighbor

BGP neighbor is 192.168.101.10, vrf cisco, remote AS 65110, external link BGP version 4, remote router ID 192.168.201.10
BGP state = Established, up for 1d10h
Last read 00:00:19, hold time is 180, keepalive interval is 60 seconds

#### R4# show ip bgp vpnv4 vrf cisco neighbor

BGP neighbor is 192.168.101.10, vrf cisco, remote AS 65110, external link BGP version 4, remote router ID 192.168.201.10
BGP state = Established, up for 00:01:23
Last read 00:00:03, hold time is 21, keepalive interval is 7 seconds

When Configuring the *Holdtime* Argument for a Value of Less than Twenty Seconds, the Following Warning Is Displayed: % Warning: A Hold Time of Less than 20 Seconds Increases the Chances of Peer Flapping

BR-W1# router bgp 65110 neighbor 192.168.101.9 timers 7 21



### Introducing BFD



















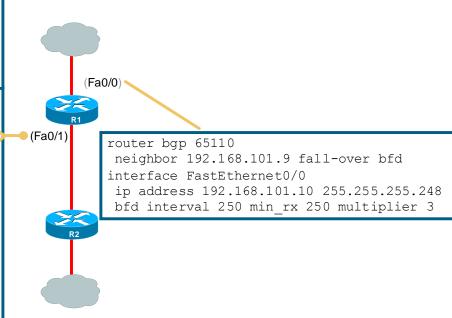
- Bi-Directional Forwarding Detection:
- Extremely lightweight hello protocol
  - IPv4, IPv6, MPLS, P2MP
- 10s of milliseconds (technically, microsecond resolution) forwarding plane failure detection mechanism.
- Single mechanism, common and standardised
  - Multiple modes: Async (echo/non-echo), Demand
- Independent of Routing Protocols
- Levels of security, to match conditions and needs
- Facilitates close alignment with hardware



#### **Drivers for BFD**

- Link-layer detection misses some types of outages
  - e.g. Control Plane failure
- Control Plane failure detection is very conservative
  - 15-40 seconds in default configurations
- Link-layer failure detection is not consistent across media types
  - Less than 50ms on APS- protected SONET
  - A few seconds on Ethernet
  - Several seconds or more on WAN links
- Provides a measure of consistency across routing protocols
- Most current failure detection mechanisms are an order of magnitude too long for time-sensitive applications




### Routing Protocol Neighbour Behaviour

#### Bi-Directional Forwarding Detection

```
router eigrp 65110
network 172.16.1.0 0.0.0.255
bfd all-interfaces
interface FastEthernet0/1
ip address 172.16.1.1 255.255.255.0
bfd interval 50 min_rx 50 multiplier 3
```

```
R1# show bfd neighbors detail
NeighAddr
                                  LD/RD
                                            RH/RS
                                                               Int
                                                     State
172.16.1.2
                                                               Fa0/1
                                   1/1
                                            αU
                                                     Uр
Session state is UP and using echo function with 50 ms interval.
OurAddr: 172.16.1.1
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3
Received MinRxInt: 1000000, Received Multiplier: 3
Holddown (hits): 0(0), Hello (hits): 1000(311)
Rx Count: 290, Rx Interval (ms) min/max/avg: 1/1900/883 last: 328 ms
Tx Count: 312, Tx Interval (ms) min/max/avg: 1/1000/875 last: 244 ms
ago
Elapsed time watermarks: -1 0 (last: 0)
Registered protocols (EIGRP)
Uptime: 00:04:15
Last packet: Version: 1
                                           - Diagnostic: 0
                                           - Demand bit: 0
             State bit: Up
             Poll bit: 0
                                           - Final bit: 0
             Multiplier: 3
                                           - Length: 24
             My Discr.: 1
                                           - Your Discr.: 1
             Min tx interval: 1000000
                                           - Min rx interval: 1000000
```

Min Echo interval: 50000



Configured in milliseconds (ms) Displayed in microseconds (µs) But shown with ms instead of µs



### Routing Protocol Neighbour Behaviour

Detecting Unreachable Neighbour (Hello Timers vs. BFD)



100% Packet Loss (Link Up)

#### EIGRP Default: Elapsed Time Between 10 – 15 Sec

```
R1# show clock
*19:43:37.646 UTC Mon Feb 16 2009

*Feb 16 19.43.48.974: *DUAL-5-NBRCHANGE: IP-EIGRP(0) 65110: Neighbor 10.1.2.220 (FastEthernet0/1) is down: holding time expired
```

#### BFD: Elapsed Time Between 100 - 150 ms

```
*Feb 16 19:15:41.730: bfdV1FSM e:5, s:3bfdnfy-client a:10.1.2.220, e: 1

*Feb 16 19:15:41.730: Session [10.1.2.120,10.1.2.220,Fa0/1,1], event ECHO FAILURE, state UP -> DOWN

*Feb 16 19:15:41.730: BFD: bfd_neighbor - action:DESTROY, proc/sub:2048/65110, idb:FastEthernet0/1, neighbor:10.1.2.220

*Feb 16 19:15:41.730: bfdV1FSM e:6, s:1

*Feb 16 19:15:41.730: Session [10.1.2.120,10.1.2.220,Fa0/1,1], event Session delete, state DOWN -> ADMIN DOWN

*Feb 16 19:15:41.734: *DUAL-5-NBRCHANGE: IP-EIGRP(0) 65110: Neighbor 10.1.2.220 (FastEthernet0/1) is down: BFD DOWN notification

*Feb 16 19:15:41.734: bFD: bfd_neighbor - action:DESTROY, proc/sub:2048/65110, idb:FastEthernet0/1, neighbor:10.1.2.220
```

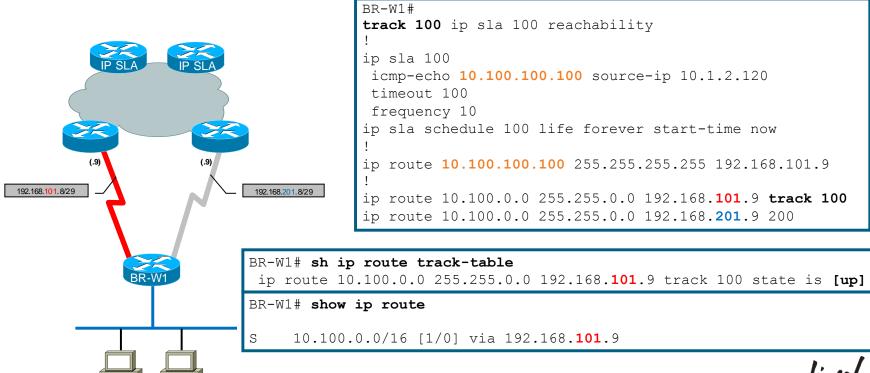
### Agenda

- Introduction
- Cisco IOS and IP Routing
- Convergence Techniques
  - First Hop Redundancy Protocols
  - Routing Protocols
  - DDR and Static Routing
  - Performance Routing
- Design and Deployment
- Final Wrap Up



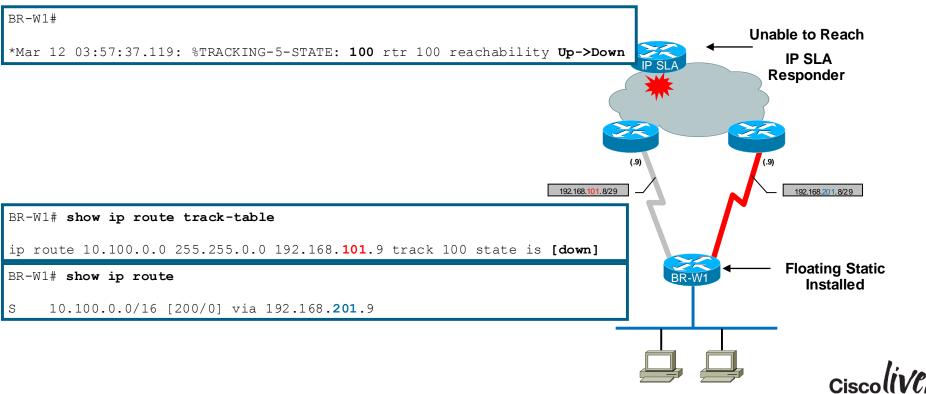


### Other Convergence Techniques


- Options using Static Routing
  - Floating Static Routes
  - Reliable Static Routing (RSR) using Enhanced Object Tracking (EOT)
- Dial on Demand Routing (DDR)
  - Backup Interface
  - Dialer Watch
  - EEM Script

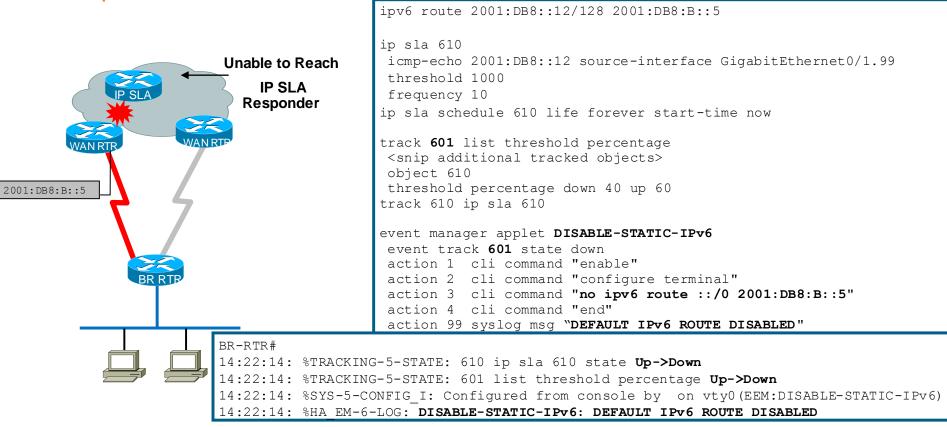
- For more information:
  - http://www.cisco.com/en/US/tech/tk801/tk133/technologies\_tech\_note09186a008009457d.shtml




### Reliable Static Routing

#### Tracking IP SLA

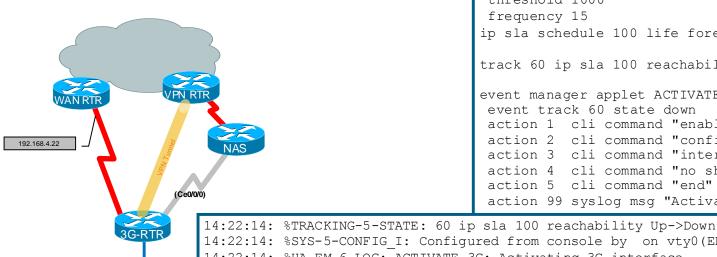



### Reliable Static Routing

#### Tracking IP SLA



### **EEM Script**


#### Example: IPv6 Static Route Event Tracking



15.4(1)T added Enhanced Object Tracking

### **EEM Script**

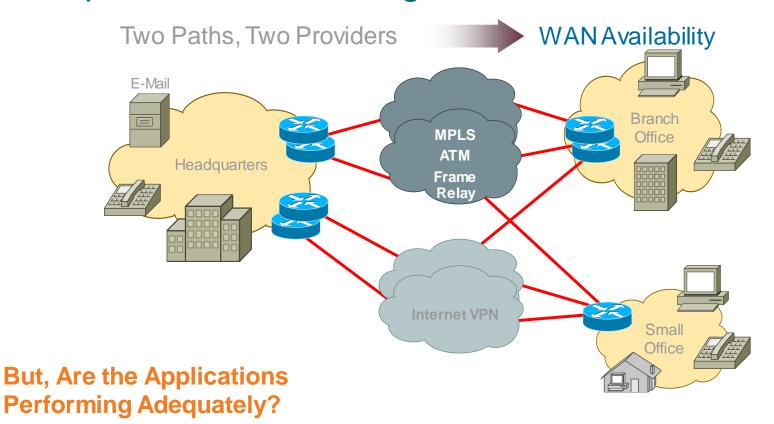
#### Example: 3G Backup with Event Tracking



adjacency

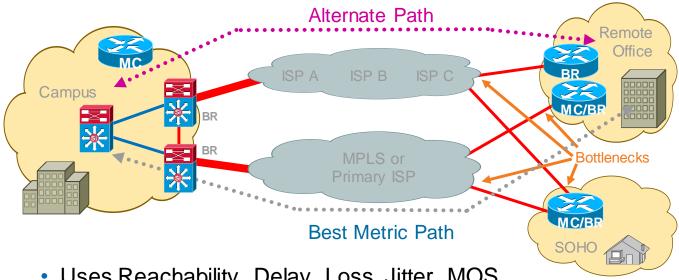
```
ip sla 100
                                   icmp-echo 192.168.4.22 source-interface
                                  GigabitEthernet0/1.99
                                   threshold 1000
                                   frequency 15
                                  ip sla schedule 100 life forever start-time now
                                  track 60 ip sla 100 reachability
                                  event manager applet ACTIVATE-3G
                                   event track 60 state down
                                   action 1 cli command "enable"
                                   action 2 cli command "configure terminal"
                                   action 3 cli command "interface cellular0/0/0"
                                   action 4 cli command "no shutdown"
                                   action 5 cli command "end"
                                   action 99 syslog msg "Activating 3G interface"
14:22:14: %SYS-5-CONFIG I: Configured from console by on vty0(EEM:ACTIVATE-3G)
14:22:14: %HA EM-6-LOG: ACTIVATE-3G: Activating 3G interface
14:22:34: %LINK-3-UPDOWN: Interface Cellular0/0/0, changed state to up
14:22:34: %DIALER-6-BIND: Interface Ce0/0/0 bound to profile Di1
14:22:34: %LINEPROTO-5-UPDOWN: Line protocol on Interface Cellular0/0/0, changed state to up
14:22:40: %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnell1, changed state to up
14:22:40: %CRYPTO-6-ISAKMP ON OFF: ISAKMP is ON
```

14:22:42: %DUAL-5-NBRCHANGE: EIGRP-IPv4 201: Neighbor 10.4.36.1 (Tunnell1) is up: new


### Agenda

- Introduction
- Cisco IOS and IP Routing
- Convergence Techniques
  - Routing Protocols
  - First Hop Redundancy Protocols
  - DDR and Static Routing
  - Performance Routing
- Design and Deployment
- Final Wrap Up

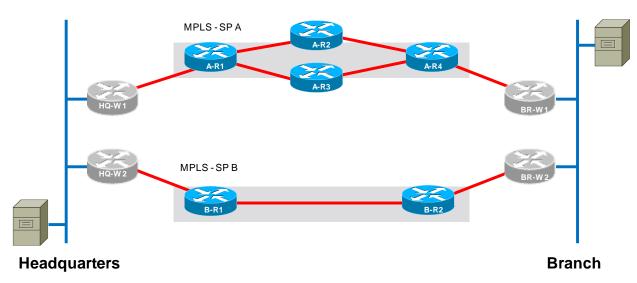





### Enterprise WAN Challenge





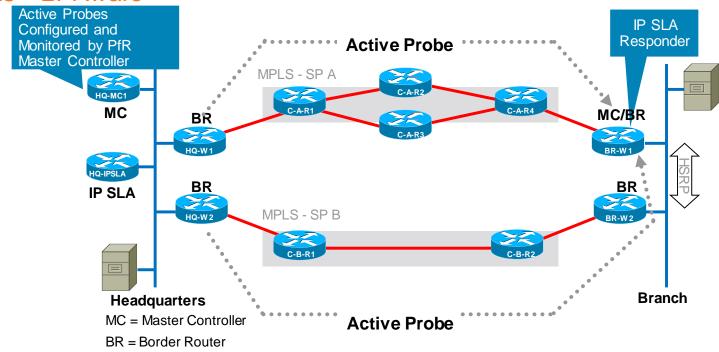

### Performance Routing (PfR)



- Uses Reachability, Delay, Loss, Jitter, MOS, Load and \$Cost to determine the best path
- PfR Components
  - BR—Border Router (Forwarding Path)
  - MC—Master Controller (Decision Maker)



### **Traditional Topology**




- Routing protocol selects path
- Blackhole reconvergence can take minutes
- Will not recover from brownouts



### PfR Enabled Topology


#### L3—L7 Aware



- PfR can override routing protocol to select path
- Active probes significantly improve reconvergence due to blackholes and brownouts



### Summary of Convergence Techniques



Excellent Option

SubOptimal Option

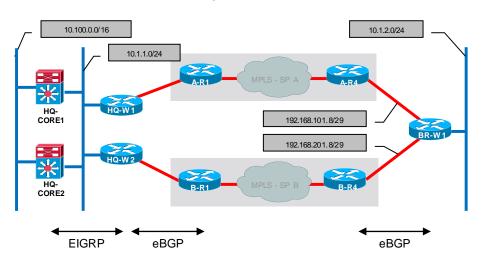
Bad Option

#### **Effectiveness of Various Techniques for Different Outage Types**

|                                | Link Down | Link Up<br>Neighbour Down | Link Up<br>Loss ~5% | Upstream<br>Blackhole | Upstream<br>Brownout |
|--------------------------------|-----------|---------------------------|---------------------|-----------------------|----------------------|
| Routing<br>Protocols           |           |                           |                     |                       |                      |
| BFD                            |           |                           |                     | $N/A^1$               | N/A                  |
| EOT                            |           |                           |                     |                       |                      |
| RSR using<br>EOT (w/IP<br>SLA) |           |                           |                     |                       |                      |
| PfR                            |           |                           |                     |                       |                      |



### Agenda


- Introduction
- Cisco IOS and IP Routing
- Convergence Techniques
- Design and Deployment
  - MPLS Dual Carrier
  - MPLS + Internet
- Final Wrap Up





 Default behaviour: 1-way load sharing

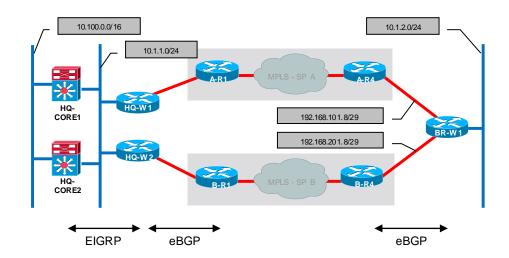
Load is shared from HQ to Branch



```
HQ-CORE1# show ip route
D EX 10.1.2.0/24 [170/258816] via 10.1.1.110, 02:24:22, Vlan10
                  [170/258816] via 10.1.1.210, 02:24:22, Vlan10
```

Only one link used Branch to HQ

```
BR-W1# show ip route
     10.100.0.0/16 [20/0] via 192.168.101.9, 00:34:00
```

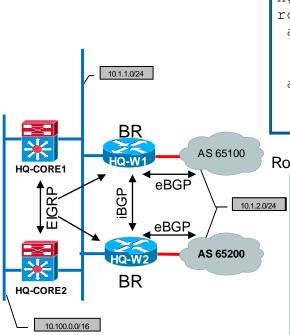



#### EIGRP

- Routes redistributed from BGP into EIGRP (match & tag)
- BGP routes are treated as EIGRP external

#### BGP

- No iBGP required between HQ-W1 & HQ-W2 (CE routers)
- Routes redistributed from EIGRP into BGP except those tagged as originally sourced from BGP






### Dual WAN (MPLS—Dual Carrier)

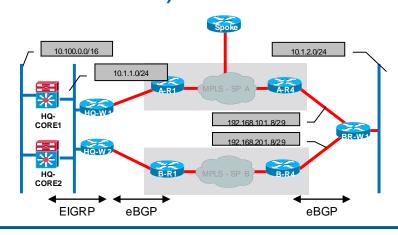
#### Mutual Route Redistribution Detail

#### Routes into EIGRP



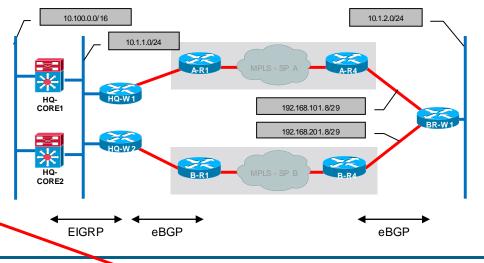
```
HQ-W1#
router eigrp networkers
address-family ipv4 unicast autonomous-system 65110
topology base
  redistribute bgp 65110 metric 45000 100 255 1 1500
address-family ipv6 unicast autonomous-system 65110
topology base
  redistribute bgp 65110 metric 45000 100 255 1 1500
```

#### Routes into BGP


```
HQ-W1#
router bgp 65110
address-family ipv4
redistribute eigrp 65110 route-map BLOCK-TAGGED-ROUTES
address-family ipv6
redistribute eigrp 65110 route-map BLOCK-TAGGED-ROUTES!
route-map BLOCK-TAGGED-ROUTES deny 10
match tag 65100 65200
route-map BLOCK-TAGGED-ROUTES permit 20
!
```

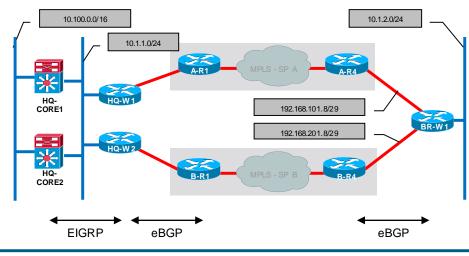
EIGRP

–No EIGRP required on BR-W1 (collapsed routing)


BGP

-Protect Branch from becoming transit AS

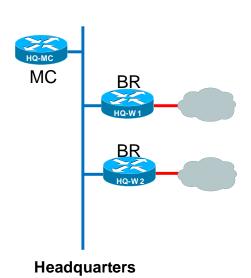



```
BR-W1# show ip bgp
 Network
                 Next Hop Metric LocPrf Weight Path
* 10.100.0.0/16 192.168.201.9
                                                   65200 65200 ?
                 192.168.101.9
                                                  0 65100 65100 ?
router bgp 65110
neighbor 192.168.101.9 route-map NO-TRANSIT-AS out
neighbor 192.168.201.9 route-map NO-TRANSIT-AS out
ip as-path access-list 1 permit ^$
route-map NO TRANSIT-AS permit 10
match as-path 1
```

- Is it possible to load share from Branch to HQ?
- BGP Multipath
  - Allows installation of multiple BGP paths to same destination
  - -Requirements (all must be equal)
  - Neighbour AS or AS-PATH
  - Weight
  - Local Pref
  - AS-PATH length
  - Origin
  - Med



```
BR-W1# show ip bgp
                                   Metric LocPrf Weight Path
      Network
                     Next Hop
                                                         65200 65200
      10.100.0.0/16 192.168.201.9
                                                        65100 65100
                     192.168.101.9
BR-W1# show ip route
     10.100.0.0/16 [20/0] via 192.168.101.9, 00:34:00
```


- Is it possible to load share from Branch to HQ?
  - maximum-paths 2
- Requires hidden command:
  - bgp bestpath as-path multipath-relax >



```
router bgp 65110
bgp bestpath as-path multipath-relax
 address-family ipv4
 maximum-paths 2
 address-family ipv6
  maximum-paths 2
BR-W1# show ip route
     10.100.0.0/16 [20/0] via 192.168.201.9, 00:03:44
                   [20/0] via 192.168.101.9, 00:03:44
```

### Performance Routing (PfR)

#### Basic Configuration—Dedicated MC, BRs



MC = Master Controller

BR = Border Router

PfR = Performance Routing

OER = Optimised Edge Routing

```
HO-MC#
key chain PFR-KEYCHAIN
 kev 1
  key-string cisco123
pfr master
border 10.1.1.110 key-chain PFR-KEYCHAIN
 interface GigabitEthernet0/0 internal
 interface GigabitEthernet0/1 external
 border 10.1.1.210 key-chain PFR-KEYCHAIN
 interface GigabitEthernet0/0 internal
 interface GigabitEthernet0/1 external
HQ-W1\# (*and* HQ-W2)
key chain PFR-KEYCHAIN
 key 1
  key-string cisco123
```

Cisco Public pfr Keyword in Examples. oer Prior to IOS 15.1 Versions.

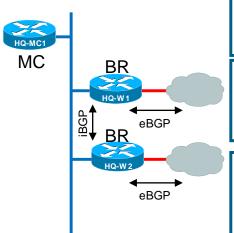
master 10.1.1.10 key-chain PFR-KEYCHAIN

pfr border

local GigabitEthernet0/0

Target Discovery – Head End

```
Simplification of configuration
via MC to MC peering


HQ-MC#
pfr master
mc-peer domain 1 head-end Loopback0
target-discovery responder-list RESPONDER_PREFIX inside-prefixes LOCAL_PREFIX
!

Local Prefixes
ip prefix-list LOCAL_PREFIX seq 5 permit 10.1.0.0/16
!
Required for dedicated Responder
```

Each MC announces its inside prefixes, together with probe target address and site names



#### iBGP Configuration—Multiple BRs



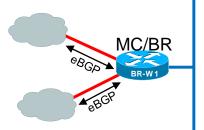
#### Headquarters

MC = Master Controller BR = Border Router

```
HQ-W1#
router bgp 65110
neighbor 10.1.1.210 remote-as 65110
neighbor 10.1.1.210 next-hop-self
neighbor 10.1.1.210 send-community
```

```
HQ-W2#
router bgp 65110
neighbor 10.1.1.110 remote-as 65110
neighbor 10.1.1.110 next-hop-self
neighbor 10.1.1.110 send-community
```

```
HQ-W2# show ip bgp
Network Next Hop Metric LocPrf Weight Path
* i10.1.2.0/24 10.1.1.110 0 100 0 65100 65100 i
*> 192.168.201.2 0 65200 65200 i
```




#### Basic Configuration—Combined MC and BR

```
key chain PFR-KEYCHAIN
 kev 1
  key-string cisco123
pfr master
 border 10.1.2.120 key-chain PFR-KEYCHAIN
 interface FastEthernet0/1 internal
 interface FastEthernet0/0.120 external
 interface FastEthernet0/0.220 external
pfr border
 local FastEthernet0/1
 master 10.1.2.120 key-chain PFR-KEYCHAIN
 active-probe address source interface
FastEthernet0/1
interface FastEtherpet0/0
```

- Load-interval affectsmoving average calculations
- Bandwidth affects utilisation calculations

MC = Master Controller BR = Border Router



**Branch** 

#### load-interval 30

interface FastEthernet0/0.120

#### bandwidth 4000

interface FastEthernet0/0.220

bandwidth 4000

# BR-W1# **show ip bgp**Network Next Hop Metric LocPrf Weight Path \*> 10.100.100.0/24 192.168.101.9 \* 192.168.201.9 BGP Chose Same Path 0 65200 65200 ? \*> 10.100.200.0/24 192.168.101.9 \* 192.168.201.9 0 65200 65200 ?

#### BR-W1# show ip route

B 10.100.100.0 [20/0] via 192.168.101.9, 03:32:30 B 10.100.200.0 [20/0] via 192.168.101.9 03:32:30

Target Discovery - Branch

HQ-MC Loopback 0 from Loopback 0

Can only use a loopback interface for peering

```
BR-W1#
pfr master
policy-rules NETWORKERS
mc-peer domain 1 10.0.0.13 Loopback0
target-discovery
```

Only need to state target-discovery on branch

Internal Interface address will be used for probe RESPONDER\_PREFIX

LOCAL\_PREFIX will be discovered upon traffic initiation

Each MC announces its inside prefixes, together with probe target address and site names

```
BR-W1#show pfr master target-discovery
PfR Target-Discovery Services
Mode: Dynamic Domain: 1
SvcRtg: client-handle: 1 sub-handle: 1 pub-seq: 0
PfR Target-Discovery Database (local)
Local-ID: 10 0.0.41 Desc: BR-W1
Target list: 10.1.40.1
Prefix-list: -empty-
PfR Target-Discovery Database (remote)
MC-peer: 10.0.0.13 Desc: HQ-MC
Target-list: 10.0.0.12
Prefix-list: 10.1.0.0/16
```



#### Load Sharing Configuration—Link Utilisation

If Traffic Goes Above the **max-xmit-utilisation** Threshold, PfR Tries to Move the Traffic from this Exit Link to Another Underutilised Exit Link

```
pfr master
 interface FastEthernet0/0.120 external
                                                     mode route control is now default
  max-xmit-utilization percentage 50
 interface FastEthernet0/0.220 external
  max-xmit-utilization percentage 50
 learn
  throughput
  periodic-interval 1
  monitor-period 1
mode route observe
 mode select-exit best
 resolve utilization priority 1 variance 5
 no resolve delay
                                                                   Branch
```

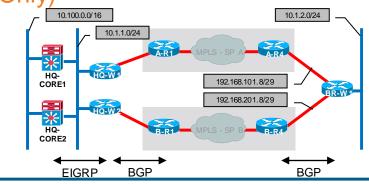
The **Variance** Keyword Configures the Allowable Percentage that an Exit Link Can Vary from the User-Defined Policy Value and Still Be Considered Equivalent

MC = Master Controller
BR = Border Router



#### Load Sharing Example: PfR Enabled (Observe Only)

Example Load


BRKRST-2042

~546 Kbps UDP Bi-Directional

10.1.2.100 to 10.100.100.100

10.1.2.100 to 10.100.200.201

 MPLS – SPB is not currently being utilised for Branch to HQ traffic



| BR-W1# show pfr       | master border deta | il            |                |             |        |        |
|-----------------------|--------------------|---------------|----------------|-------------|--------|--------|
| Border                | Status UP/DOWN     |               | AuthFail       | Vers        | ion    |        |
| 10.1.2.120            | ACTIVE UP          | 02:30:02      | 0              | 2.2         |        |        |
| Fa0/1                 | INTERNAL UP        |               |                |             |        |        |
| Fa0/0.120             | EXTERNAL UP        |               |                |             |        |        |
| Fa0/0.220             | EXTERNAL UP        |               |                |             |        |        |
| External<br>Interface | Capacity<br>(kbps) | Max BW (kbps) | BW Used (kbps) | Load<br>(%) | Status | ExitId |
|                       |                    |               |                |             |        |        |
| Fa0/0.120             | Tx 4000            | 2000          | 1093           | 27          | UP     | 2      |
|                       | Rx                 | 4000          | 547            | 13          |        |        |
| Fa0/0.220             | Tx 4000            | 2000          | 0              | 0           | UP     | 1      |
| 2                     | Rx                 | 4000          | 546            | 13          |        |        |

Border

Fa0/1

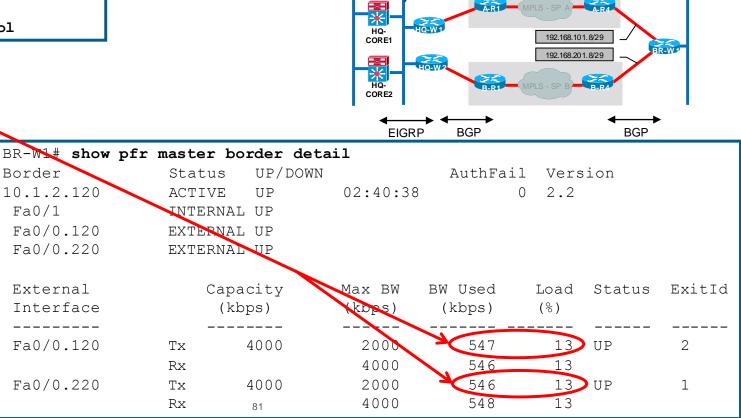
10.1.2.120

Fa0/0.120

Fa0/0.220

External

Interface

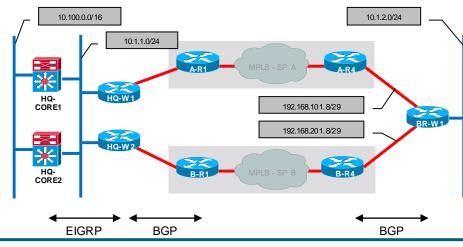

Fa0/0.120

Fa0/0.220

Load Sharing Example: PfR Enabled (Route Control) 10.100.0.0/16

BR-W1# pfr master mode route control

- Both MPLS carriers are now being utilised (in both directions)
- More prefixes and flows result in better load sharing




10.1.1.0/24

10.1.2.0/24

#### Load Sharing Example: PfR Enabled (Route Control)

- BGP route selection is influenced by PfR
- BGP change is also reflected with update to routing table



```
## Show ip bgp
Network

Next Hop
192.168.101.9
192.168.201.9

** 10.100.200.0/24 192.168.101.9
** 192.168.201.9

Changed by PfR

** 192.168.201.9

** 10.100.200.0/24 192.168.101.9
192.168.201.9

** 10.100.200.0/24 192.168.201.9

** 10.100.200.0/24 192.168.201.9


** 10.100.200.0/24 192.168.201.9

** 10.100.200.0/24 192.168.201.9
```

- B 10.100.100.0 [20/0] via 192.168.101.9, 03:38:43
- B 10.100.200.0 [20/0] via 192.168.201.9, 03:45:13

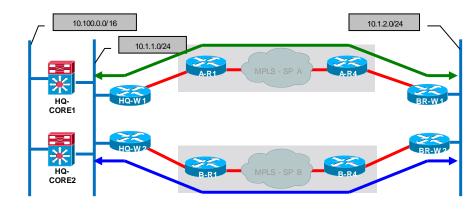
#### Load Sharing Example: PfR Enabled (Route Control)

- **Dual Router WAN Edge** 
  - HSRP facing LAN hosts
  - Requires iBGP config (similar to HQ)
  - PfR influences outbound traffic using BGP local-preference (5000)



```
BR-W1# show ip bgp
  Network
                    Next Hop
                                         Metric LocPrf Weight Path
* i10.100.100.0/24
                    10.1.2.220
                                                   100
                                                            0 65200 65200 ?
*>
                    192.168.101.9
                                                              65100 65100 ?
*>i10.100.200.0/24 10.1.2.220
                                                              65200 65200 ?
                    192.168.101.9
                                                              65100 65100 ?
```

```
<snip>
Global Settings:
  max-range-utilization percent 20 recv 0
  mode route metric bgp local-pref 5000
  mode route metric static tag 5000
  trace probe delay 1000
  no logging
```

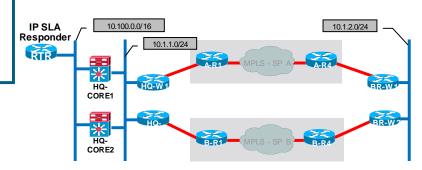

BR-W1#show pfr master

```
BR-W1# show ip route
                                                  10.100.100.0 [20/0] via 192.168.101.9, 01:08:43
                                                  10.100.200.0 [200/0] via 10.1.2.220, 00:03:22
exit holddown time 60 secs, time remaining \overline{0}
```

Default Policy Settings: <snip>

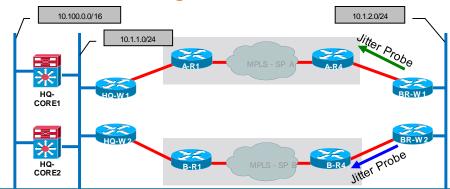
#### Multiple Paths—Select Best Path by Destination Prefix

- Monitor relevant path characteristics (round trip delay, loss, jitter, ...)
  - path A: <5 ms delay, 0% loss</li>
  - path B: < 50 ms delay, 0% loss</li>
- Accurate measurement of most parameters requires active probes (which leverage IP SLA)
- Each path must be evaluated in each direction independently
- Craft a policy to take advantage of unique link characteristics
  - If both paths are lossless, then prefer the path with lower delay.
  - However, if loss begins to exceed .01% then prefer the lossless path even if it has increased delay.






### Active Probe Configuration


```
RTR#
int Loopback0
ip address 10.0.0.12 255.255.255
!
ip sla responder
```

- Configure IP SLA Responder on remote router (consider "shadow router")
- Configure "pfr-map" to monitor desired remote IP prefix(es)
- For performance sensitive traffic, use "mode monitor fast"
- Probes are sourced from Border Routers and routed via external interfaces. Probe return traffic returns via traditional routed path (likely asymmetric)



```
BR-W1#
ip prefix-list HQ-CRITICAL-100 seq 10 permit 10.100.100.0/24
!
pfr-map PFR-HQ-FAST-FAILOVER 100
  match traffic-class prefix-list HQ-CRITICAL-100
  set mode route observe
  set mode monitor fast
  set probe frequency 2
!
pfr master
  policy-rules PFR-HQ-FAST-FAILOVER
```

### **Active Prefix Monitoring**



PasSDlv

BR-W1# show pfr master prefix detail Prefix: 10.100.100.0/24

State: INPOLICY\* Time Remaining: @0

Policy: 10

Most recent data per exit

Border Interface \*10.1.2.120 Fa0/0

ActPMOS / ActSJit

ActSLos

PasLDly ActSDly

pfr-map PFR-HO-FAST-FAILOVER 100

BR-W1# show pfr master policy 100

match ip prefix-lists: HQ-CRITICAL-100 backoff 300 3000 300

delay relative 50 holddown 300

periodic 0 \*probe frequency 2 \*mode route observe

\*mode monitor fast mode select-exit best loss relative 10

jitter threshold 20 mos threshold 3.60 percent 30

unreachable relative 50 next-hop not set

forwarding interface not set resolve utilization priority 1 variance 5

\* Overrides Default Policy Setting

Short/Long Term Loss

Short/Long Term Delay



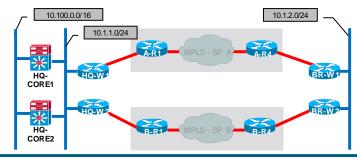
Most recent voice data per exit Border Interface

\*10.1.2.120 10.1.2.220

10.1.2.220

Fa0/0 Fa0/0

Fa0/0


ActLDlv

ActLLos

2.8

### Controlling a Configured Prefix

- Compare loss characteristics of each exit (within 5% considered "same")
- Next, compare delay characteristics of each exit (within 5% considered "same")
- Maximum packet loss for an exit is limited to 100 (packets per million) or 0.01%
- Maximum delay for an exit is 100 ms
- Unreachable policy is always considered "highest priority"



```
pfr-map PFR-HQ-FAST-FAILOVER 100
no set resolve utilization
set resolve loss priority 1 variance 5
set resolve delay priority 2 variance 5
set loss threshold 100
set delay threshold 100
set holddown 90
set periodic 90
set mode select-exit best
set mode route control
pfr master
policy-rules PFR-HQ-FAST-FAILOVER
```

### Controlling a Configured Prefix

Branch Route Tables - Monitor Only

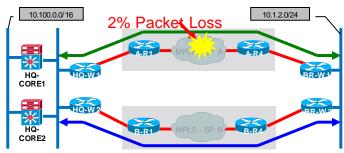
| BR-W1# <b>show ip bgp</b> Network | Next Hop      | Metric | LocPrf | Weight | Path  |       |
|-----------------------------------|---------------|--------|--------|--------|-------|-------|
| *> 10.100.0.0/16                  | 192.168.101.9 |        |        | 0      | 65100 | 65100 |
| * i                               | 10.1.2.220    | 0      | 100    | 0      | 65200 | 65200 |
| BR-W2# <b>show ip bgp</b>         |               |        |        |        |       |       |
| Network                           | Next Hop      | Metric | LocPrf | Weight | Path  |       |
| * i10.100.0.0/16                  | 10.1.2.120    | 0      | 100    | 0      | 65100 | 65100 |
| *>                                | 192.168.201.9 |        |        | 0      | 65200 | 65200 |

### PfR Moves the (More Specific) Prefix 10.100.100.0/24 to the

| Path with Lower Delay                       |                            | Branch Route Tables - PfR Route Control |                      |                           |       |   |  |  |
|---------------------------------------------|----------------------------|-----------------------------------------|----------------------|---------------------------|-------|---|--|--|
|                                             | BR-W1# <b>show ip bgp</b>  |                                         |                      |                           |       |   |  |  |
|                                             | Network                    | Next Hop                                | Metric LocPrf Weight | Path                      |       |   |  |  |
|                                             | *> 10.100.0.0/16           | 192.168.101.9                           | 0                    | 65100                     | 65100 | ? |  |  |
|                                             | * i                        | 10.1.2.220                              | 0                    | 65200                     | 65200 | ? |  |  |
| Prefix Inserted by PfR —                    | *> 10.100.100.0/2 <b>4</b> | 192.168.101.9                           | 0                    | 65100                     | 65100 | ? |  |  |
|                                             | BR-W2# <b>show ip bgp</b>  |                                         |                      |                           |       |   |  |  |
|                                             | Network                    | Next Hop                                | Metric LocPrf Weight | Metric LocPrf Weight Path |       |   |  |  |
| Prefix Advertised                           | * i10.100.0.0/16           | 10.1.2.120                              | 0 100 0              | 65100                     | 65100 | ? |  |  |
|                                             | *>                         | 192.168.201.9                           | 0                    | 65200                     | 65200 | ? |  |  |
| by PfR via BGP BRKRST-2042 © 2015 Cisco and | *>i10.100.100.0/24         | 10.1.2.120                              | 0 5000 0             | 65100                     | 65100 | ? |  |  |

### Path Disruption: Loss

```
HQ-MC#
*Mar 3 21:18:53.247: %OER_MC-5-NOTICE: Active ABS Loss OOP Prefix 10.1.2.0/24, loss 5025,


BR 10.1.1.110, i/f Gi0/1

*Mar 3 21:18:55.263: %OER_MC-5-NOTICE: Active ABS Loss OOP Prefix 10.1.2.0/24, loss 15228,

BR 10.1.1.110, i/f Gi0/1

*Mar 3 21:18:55.267: %OER_MC-5-NOTICE: Route changed Prefix 10.1.2.0/24, BR 10.1.1.210,
i/f Gi0/1, Reason Loss, OOP Reason Loss
```

```
MC = Master Controller
BR = Border Router
OOP = Out Of Policy
```



```
BR-W1#

*Mar 3 21:18:53.847: %OER_MC-5-NOTICE: Active ABS Loss OOP Prefix 10.100.100.0/24, loss 4016,

BR 10.1.2.120, i/f Fa0/0

*Mar 3 21:18:55.863: %OER_MC-5-NOTICE: Active ABS Loss OOP Prefix 10.100.100.0/24, loss 5025,

BR 10.1.2.120, i/f Fa0/0

*Mar 3 21:18:55.867: %OER_MC-5-NOTICE: Route changed Prefix 10.100.100.0/24,

BR 10.1.2.220, i/f Fa0/0, Reason Loss, OOP Reason Loss
```

Controlling a Configured Prefix

Branch Route Tables – PfR Route Control – SP A Preferred normal conditions

|                            | BR-W1# <b>show ip bgp</b>   |               |        |        |        |       |       |  |
|----------------------------|-----------------------------|---------------|--------|--------|--------|-------|-------|--|
|                            | Network                     | Next Hop      | Metric | LocPrf | Weight | Path  |       |  |
|                            | *> 10.100.0.0/16            | 192.168.101.9 |        |        | 0      | 65100 | 65100 |  |
|                            | * i                         | 10.1.2.220    | 0      | 100    | 0      | 65200 | 65200 |  |
| Prefix Controlled by PfR - | <b>&gt;</b> 10.100.100.0/24 | 192.168.101.9 |        |        | 0      | 65100 | 65100 |  |

BR-W2# show ip bqp

Network Next Hop

192.168.201.9

100

5000

0 65100 65100

Metric LocPrf Weight Path

0 65100 65100 ?

0 65200 65200 ?

0 65100 65100 ?

Prefix Controlled by PfR ->i10.100.100.0/24 10.1.2.120

PfR Moves the Prefix 10.100.100.0/24 to the Loss Free Path

Branch Route Tables - PfR Route Control - SP B Preferred with loss on SP A

BR-W1# show ip bqp

Next Hop Network Metric LocPrf Weight Path

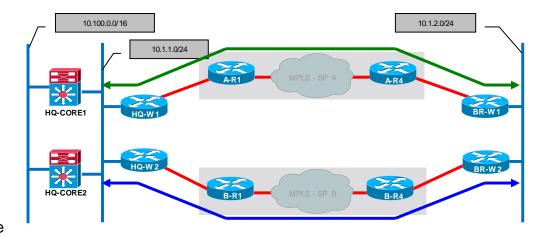
0 65100 65100 ?

192.168.201.9 100 0 65200 65200 ? 0

5000 0 65200 65200 ?

\*>i10.100.100.0/24 10.1.2.220 Prefix Controlled by PfR -

BR-W2# show ip bgp Next Hop Network Metric LocPrf Weight Path


100

0 65100 65100 ?

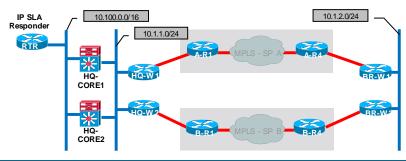
\*> 192.168.201.9 0 65200 65200 ? Prefix Controlled by PfR >> 10.100.100.0/24 192.168.201.9 0 65200 65200 ?

### Multiple Paths—Select Best Path by Application

- Monitor relevant path characteristics (round trip delay, loss, jitter, ...)
  - path A: <5 ms delay, 0% loss, 0% jitter</li>
  - path B: < 50 ms delay, 0% loss, 0% jitter</li>
- Craft a policy to take advantage of unique link characteristics
  - If both paths are free of loss and jitter, then prefer the path with lower delay.
  - However, if jitter begins to exceed 20ms, then prefer jitter free path even if it has increased delay
  - If loss begins to exceed .01% then prefer the lossless path even if it has increased delay or jitter.






### Application Specific Monitoring

- Characterise the traffic of interest
- Configure "pfr-map" to monitor desired application (and src/dst)
- For performance sensitive traffic, use "mode monitor fast"

We place this line in the pfr-map prior to others to make it higher priority

No Probe Configuration

Target Discovery is used



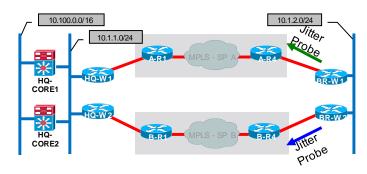
```
BR-W1#
ip access-list extended VOICE-ACL
permit udp any range 16384 32767 10.100.100.0 0.0.0.255
range 16384 32767
!
pfr-map PFR-HQ-FAST-FAILOVER 10
match traffic-class access-list VOICE-ACL
set mode route observe
set mode monitor fast
set probe frequency 2
!
pfr master
policy-rules PFR-HQ-FAST-FAILOVER
```

### Link Groups

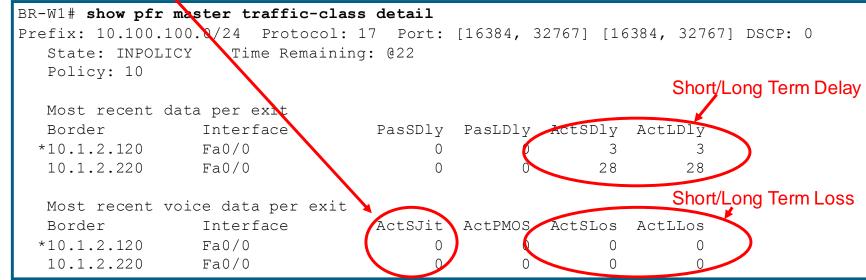
Provide preference for specific traffic to traverse dedicated links

MPLS with known SLA ——

MPLS with no QoS SLA -

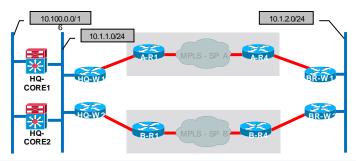

Use MPLS with SLA unless Out of Policy

### Category of Interface specified by link-group


```
BR-W1#
pfr master
border 10.1.2.120 key-chain PFR-KEYCHAIN
interface FastEthernet0/0 external
  link-group MPLS-SPA
!
border 10.1.2.210 key-chain PFR-KEYCHAIN
interface FastEthernet0/0 external
  link-group MPLS-SPB
!
pfr-map PFR-HQ-FAST-FAILOVER 10
set link-group MPLS-SPA fallback MPLS-SPB
```



### **Application Specific Monitoring**




### **Short Term Jitter**



### Controlling a Configured Application

- Compare loss characteristics of each exit (within 5% considered "same")
- Next, compare jitter characteristics of each exit (within 5% considered "same")
- Finally, compare delay characteristics of each exit (within 5% considered "same")
- Maximum packet loss for an exit is limited to 100 (packets per million) or 0.01%
- Maximum jitter for an exit is 20 ms
- Maximum delay for an exit is 100 ms
- Unreachable policy is always considered "highest priority"



```
pfr-map PFR-HQ-FAST-FAILOVER 10
no set resolve utilization
set resolve loss priority 1 variance 5
set resolve jitter priority 2 variance 5
set resolve delay priority 3 variance 5
set loss threshold 100
set jitter threshold 20
set delay threshold 100
set holddown 90
set periodic 90
set mode select-exit best
set mode route control
pfr master
policy-rules PFR-HQ-VOICE
```

### Controlling a Configured Application

### Chosen Exit BR-W1# show ip policy Route map Interface OER-03/04/09-17:43:17.387-F-OER (Dynamic) Fa0/1 BR-W1# show route-map dynamic detail route-map OER-03/04/09-17:43:17.387-F-OER, permit, sequence 0, identifier 1200584152 Match clauses: Points to A-R4 ip address (access-lists): oer#15 (via External) Extended IP access list oer#15 1073741823 permit udp any range 16384 32767 10.100.100.0 0.0.0.255 range 16384 32767 Set clauses: ip next-hop 192.168.101.9 interface FastEthernet0/0 Policy routing matches: 1040 packets, 7690 bytes Current active dynamic routemaps = 1

 Using Policy Based Routing Confirmation of installation on internal interfaces

◆Dynamic Route Map Pointing Specified Traffic to Preferred Interface and Next Hop Address

Dynamic ACL on BR duplicating the one configured on MC

### Inactive Exit

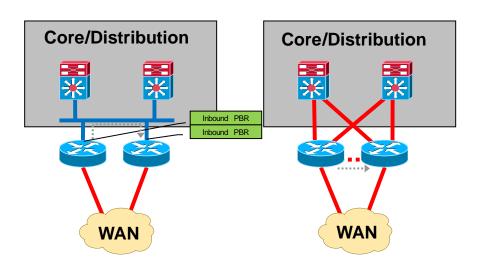
```
BR-W2# show ip policy
Interface Route map
Fa0/1 OER-03/04/09-17:43:17.979-22-OER (Dynamic)

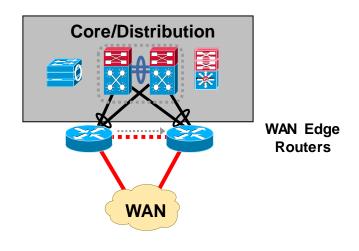
BR-W2# show route-map dynamic detail
route-map OER-03/04/09-17:43:17.979-22-OER, permit, sequence 0, identifier 1194973244

Match clauses:
    ip address (access-lists): oer#15
    Extended IP access list oer#15
    1073741823 permit udp any range 16384 32767 10.100.100.0 0.0.0.255 range 16384 32767

Set clauses:
    ip next-hop 10.1.2.120
    interface FastEthernet0/1
Policy routing matches: 0 packets, 0 bytes
```




Points to BR-W1


(via Internal)

Current active dynamic routemaps = 1

# Performance Routing – WAN Aggregation

Application Control via Dynamic PBR



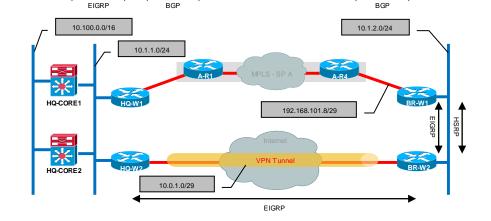


Supported Design

Requires Edge Router Link



# Agenda


- Introduction
- Cisco IOS and IP Routing
- Convergence Techniques
- Design and Deployment
  - MPLS Dual Carrier
  - MPLS + Internet
- Final Wrap Up





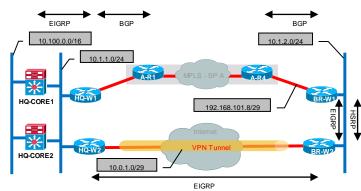
### PE-CE Protocol: BGP, Tunnel Protocol: EIGRP

- Headquarters WAN Edge
  - W1 learns Branch route via eBGP
  - W2 learns Branch route via EIGRP
- Headquarters Core
  - W1 redistributes eBGP into EIGRP, results in EIGRP external
  - W2 does not require redistribution, results in EIGRP internal
  - Core1, Core2 install Branch route
     via W2



HQ to Branch Traffic Flows Across Tunnel

```
HQ-W1# show ip route
B 10.1.2.0/24 [20/0] via 192.168.101.2, 05:24:01


HQ-W2# show ip route
D 10.1.2.0/24 [90/26882560] via 10.0.1.2, 00:00:04, Tunnel1

HQ-CORE1# show ip route
D 10.1.2.0/24 [90/26882816] via 10.1.1.210, 00:02:32, Vlan10
```

### PE-CE Protocol: BGP, Tunnel Protocol: EIGRP

- Branch WAN Edge
  - W1 learns HQ route via eBGP
  - W2 learns HQ route via EIGRP
  - No redistribution configured
  - HSRP Primary is on W1

# Branch to HQ Traffic Flows Across MPLS



Standby

10.1.2.220

Virtual IP

10.1.2.1

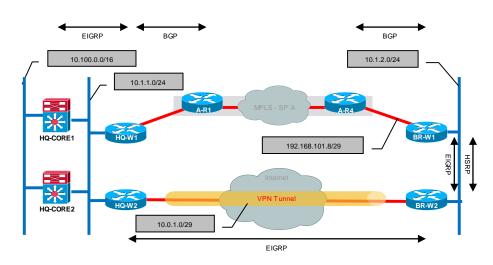
```
BR-W1# show ip route
B 10.100.100.0/24 [20/0] via 192.168.101.9, 04:48:58
B 10.100.200.0/24 [20/0] via 192.168.101.9, 03:44:06

BR-W2# show ip route
D 10.100.100.0/24 [90/26882816] via 10.0.1.1, 00:10:56, Tunnel1
D 10.100.200.0/24 [90/26882816] via 10.0.1.1, 00:10:57, Tunnel1

BR-W1# show standby brief

P indicates configured to preempt.
```

Fa0/1


Interface Grp Pri P State Active

110 P Active local

### PE-CE Protocol: BGP, Tunnel Protocol: EIGRP

- How to force HQ to Branch traffic across MPLS (primary)?
  - Adjust administrative distance of EIGRP routes learned via tunnel
  - Ensure new distance is higher than that of EIGRP external (170)

```
HQ-W2#
router eigrp 65110
network 10.0.1.0 0.0.0.7
distance 195 10.0.1.0 0.0.0.7
```



### Now:

HQ to Branch Traffic Flows Across MPLS

```
HQ-W1# show ip route
B 10.1.2.0/24 [20/0] via 192.168.101.2, 05:24:01

HQ-W2# show ip route
D EX 10.1.2.0/24 [170/261120] via 10.1.1.110, 00:07:25, GigE0/0

HQ-CORE1# show ip route
D EX 10.1.2.0/24 [170/258816] via 10.1.1.110, 00:08:44, Vlan10
```

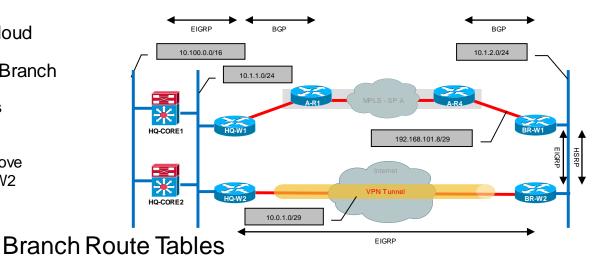
### **MPLS** Failure

- Failure within MPLS cloud
- Worst Case
  - Primary dependency is BGP timers
  - Results in end to end convergence time as long as BGP Holdtime
  - Could be much lower with BGP tuning and use of BFD

# EIGRP BGP 10.100.0.0/16 10.1.1.0/24 HQ-CORE1 HQ-WY 192.168.101.8/29 FIGRP BR-WZ Internet VPN Tunnel BR-WZ EIGRP

**HQ** Route Tables

### After Failure:


HQ to Branch Traffic Flows Across Tunnel

```
HQ-W2# show ip route
D 10.1.2.0/24 [195/26882560] via 10.0.1.2, 00:06:46, Tunnel1
HQ-CORE1# show ip route
D 10.1.2.0/24 [90/26882816] via 10.1.1.210, 00:09:18, Vlan10
```



### **MPLS** Failure

- Failure within MPLS cloud
- Suboptimal routing at Branch
  - HSRP primary remains unchanged at BR-W1
  - Could use EOT and move HSRP primary to BR-W2



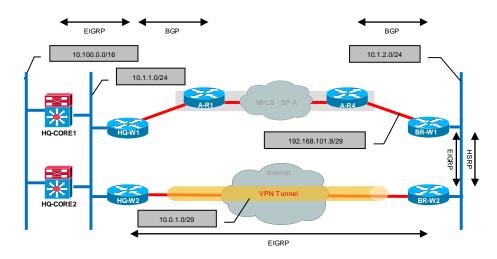
### After Failure:

Branch to HQ Traffic Flows Across Tunnel

```
BR-W1# show ip route

D 10.100.100.0/24
        [90/26885376] via 10.1.2.220, 00:22:42, FastEthernet0/1

D 10.100.200.0/24
        [90/26885376] via 10.1.2.220, 00:22:42, FastEthernet0/1


BR-W2# show ip route

D 10.100.100.0/24 [90/26882816] via 10.0.1.1, 01:08:44, Tunnel1
```

10.100.200.0/24 [90/26882816] via 10.0.1.1, 01:08:45, Tunnel1

### PE-CE Protocol: BGP, Tunnel Protocol: EIGRP

- Options for PfR with Multiple Routing Protocols
  - PIRO Protocol Independent Route Optimisation
  - EIGRP Route Control (requires EIGRP only as route source for WAN)



### PIRO [12.4(24)T]

Supports Application Specific Monitoring (Dynamic Policy Routing)

Supports Hybrid BGP/EIGRP Topology with "mode route protocol pbr" - Requires 15.0(1)M4

Requires BR-BR Direct Neighbour Relationship

```
HQ-MC#
pfr master
mode route protocol pbr
```



# Agenda

- Introduction
- Cisco IOS and IP Routing
- Convergence Techniques
- Design and Deployment
- Final Wrap Up
  - Key Takeaways





# **Key Takeaways**

- Outages can manifest in many different ways. Network design should be based on application requirements to survive various outages.
- Cisco IOS has inherent load sharing capabilities. Analye your network topology and use these to your advantage.
- End-to-end convergence time is a critical metric. Understand how localised topology changes affect end-to-end resiliency.
- Multiple links/paths not only increase network reliability but can improve application performance.



# **Key Takeaways**

- IP SLA based monitoring can detect outage types that are virtually undetectable by traditional "hello based" techniques.
- Performance Routing permits path selection based on current real time characteristics.
- Most effective network designs incorporate a combination of convergence techniques



# Participate in the "My Favorite Speaker" Contest

### Promote Your Favorite Speaker and You Could be a Winner

- Promote your favorite speaker through Twitter and you could win \$200 of Cisco Press products (@CiscoPress)
- Send a tweet and include
  - Your favorite speaker's Twitter handle @pralldc
  - Two hashtags: #CLUS #MyFavoriteSpeaker
- You can submit an entry for more than one of your "favorite" speakers
- Don't forget to follow @CiscoLive and @CiscoPress
- View the official rules at <a href="http://bit.ly/CLUSwin">http://bit.ly/CLUSwin</a>



## Continue Your Education

- Demos in the Cisco Campus
- Walk-in Self-Paced Labs
- Table Topics
- Meet the Engineer 1:1 meetings





# Complete Your Online Session Evaluation

# Give us your feedback and receive a Cisco Live 2015 T-Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site
   <a href="http://showcase.genie-connect.com/clmelbourne2015">http://showcase.genie-connect.com/clmelbourne2015</a>
- Visit any Cisco Live Internet Station located throughout the venue

T-Shirts can be collected in the World of Solutions on Friday 20 March 12:00pm - 2:00pm



Learn online with Cisco Live!
Visit us online after the conference for full access to session videos and presentations. www.CiscoLiveAPAC.com





#