

TOMORROW starts here.

Understanding IPv6

BRKRST-1069

Shannon McFarland – CCIE #5245

Principal Engineer

#clmel

Agenda

- Why IPv6?
- What is IPv6?
- How does IPv6 work?

Why IPv6?

53

DODD

PPRE

17

.....

You Have Heard It All Before

- IANA and the RIRs have run out of IPv4 address
- Consumers are generally ambivalent
 - Do not/should not care whether IPv4 or IPv6 is used to deliver their content
 - Won't understand they "Are on the wrong protocol"!
- IPv4 address trading markets
 - Growth, fragmentation, and identity verification of the IPv4 routing table is inevitable
 - /15 IPv4 Addresses For Sale; Asking \$9.00/IP
 - /16 IPv4 Addresses For Sale, Asking \$9.20/IP
 - /17 IPv4 Addresses For Sale, Asking \$9.50/IP

Common Drivers in the Enterprise

live;

What is IPv6?

53

DODD

THE O

17

What is IPv6?

- 128bit addressing scheme
 - Hexadecimal representation
 - CIDR masking
- Introduces new protocol level behaviours
 - Neighbour Discovery
 - Stateless Addressing
 - No more Broadcast, only Multicast

So How Big Is The IPv6 Address Space?

This one is bigger ☺

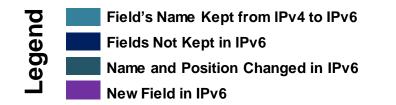
340,282,366,920,938,463,463,374,607,432,768,211,456

(IPv6 Address Space - 340 Trillion Trillion Trillion)

VS

4,294,967,296

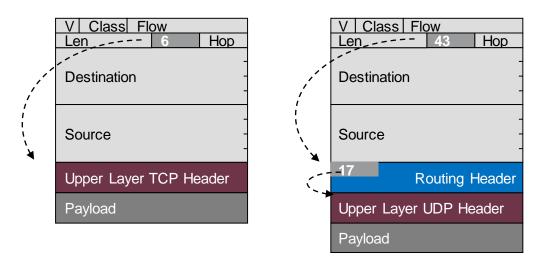
(IPv4 Address Space - 4 Billion)

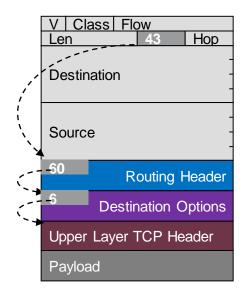


IPv4 and IPv6 Header Comparison

IPv4 Header

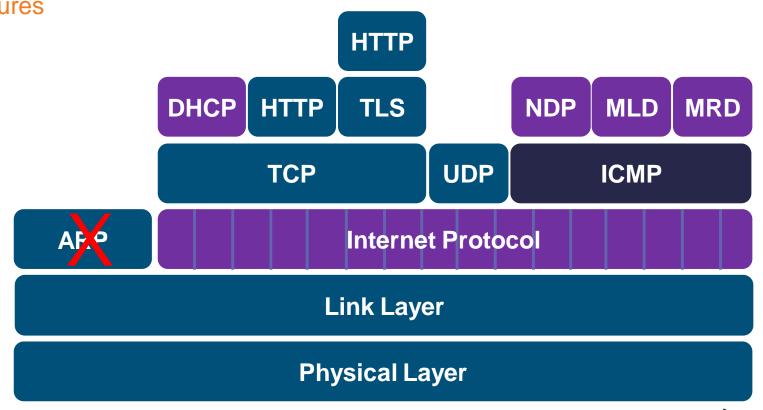
IPv6 Header


Version	IHL	Type of Service	Total Length		
Identification		Flags		ragment ffset	
Time to Live P		Protocol	Header Checksum		
Source Address					
Destination Address					
Options					Padding



Version	Traffic Class	F	low Label	
Payload Length			Next Header	Hop Limit
Source Address				
Destinat	tion Address			
				. /

Extension Headers



•Extension headers are daisy chained

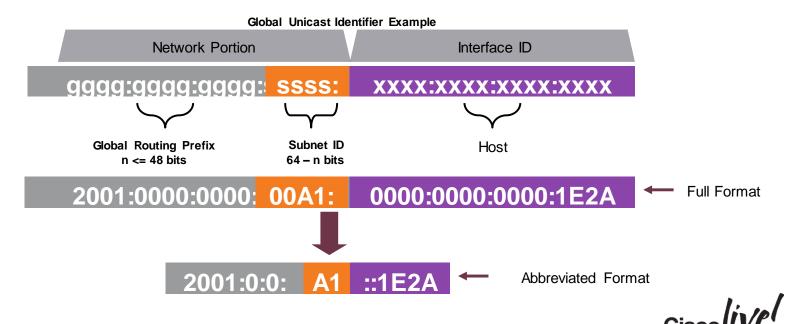
•Order is important!

IPv6 Protocol Stack New features

IPv4/IPv6 Technology Comparison

Service	IPv4	IPv6	
Addressing Range	32-bit, NAT	128-bit, Multiple Scopes	
IP Provisioning	Manual, DHCP	Manual, SLAAC, DHCP (and renumbering capability)	
Security	IPSec	IPSec	
Mobility	Mobile IP	Mobile IP with Direct Routing	
Quality-of-Service	Differentiated Service, Integrated Service	Differentiated Service, Integrated Service	
Multicast	IGMP/PIM/MBGP	MLD/PIM/MBGP, Scope Identifier	

IPv6 Addressing – The First Half


BENN

53

IPv6 Addresses

- IPv6 addresses are 128 bits long
 - Segmented into 8 groups of four HEX characters
 - Separated by a colon (:)

IPv6 Address Syntax

- Hex numbers are not case sensitive
 - -2001:0dB8:0000:130f:0000:0000:087c:AaAa
- Abbreviations are possible
 - -2001:0db8:0000:130f::87c:aaaa
 - Zeros in contiguous blocks can be represented by ::
 - Double colon can only appear once in the address
- Only leading zeros can be omitted
 2001:db8:0:130f::87c:aaaa
- IPv6 uses CIDR representation

-2001:0db8:0000:130f:0000:0000:087c:aaaa/128

IPv6 Address Syntax

Loopback address representation

0:0:0:0:0:0:0:1 == ::1

- Same as 127.0.0.1 in IPv4, it identifies self
- Unspecified address representation

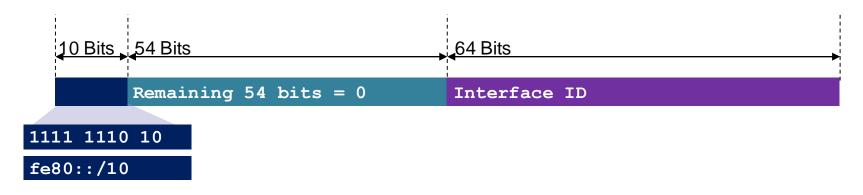
0:0:0:0:0:0:0:0:0:=


- Initial DHCP request, Duplicate Address Detection DAD
- Default Route representation

::/0

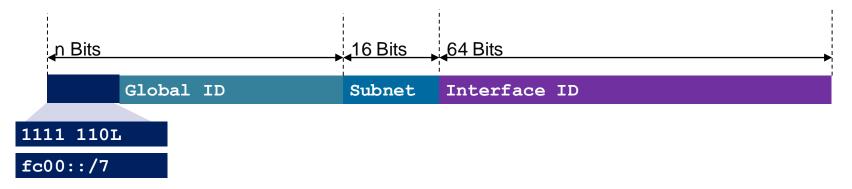
IPv6 Address Scopes

 An IPv6 interface is "expected" to have multiple addresses and multiple scopes

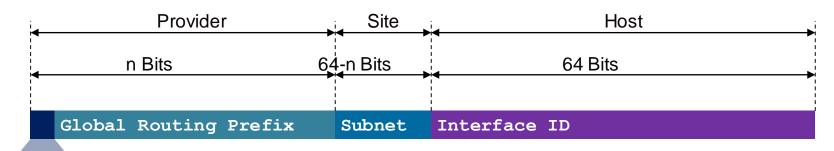


IPv6 Address Types

- Three types of unicast addresses
 - Link-Local Non routable exists on single layer 2 domain (fe80::/64)
 - Unique-Local Routable within administrative domain (fc00::/7)
 - Global Routable across the Internet (2000::/3)
- Multicast addresses (ff00::/8)
 - Flags (z) in 3rd nibble (4 bits) Scope (s) into 4th nibble


Link Local Address

- Mandatory
- Automatically self assigned by the device using EUI-64
- Only link specific scope


Unique Local Address (RFC 4193)

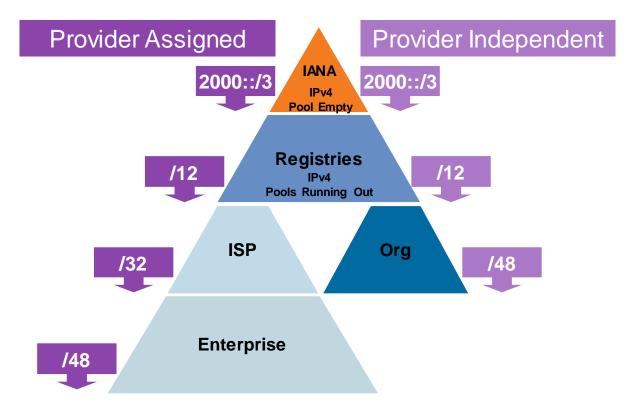
- FC00::/8 is Registry Assigned (L bit = 0), FD00::/8 is self generated (L bit = 1)
 - Registries not yet assigning ULA space
- Global ID can be generated using an algorithm
 - Low order 40 bits result of SHA-1 Digest {EUI-64 && Time}
- Not considered best practice

Global Unicast Addresses

001

- Globally routable
 - Requires correct border security!!
- Considered best practice for all device numbering
- Common allocation sizes are /32, /48, /52, /56, /64

Interface Address Set

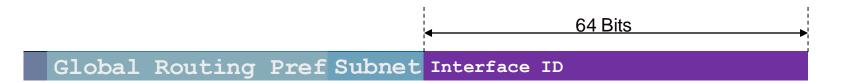

Reference

An interface can have many addresses allocated to it

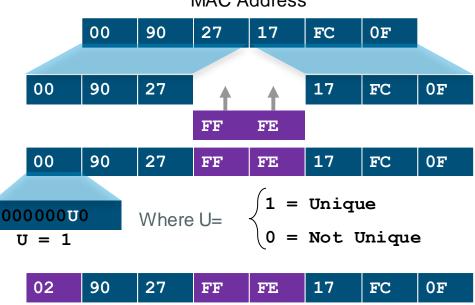
Address Type	Requirement	Comment
Link Local	Required	Required on all interfaces
Unique Local	Optional	Valid only within an Administrative Domain
Global Unicast	Optional	Globally routed prefix
Auto-Config 6to4	Optional	Used for 2002:: 6to4 tunnelling
Solicited Node Multicast	Required	Neighbour Discovery and Duplicate Detection (DAD)
All Nodes Multicast	Required	For ICMPv6 messages

PI and PA Allocation Process

IPv6 Addressing – The Second Half


BBIN

53


Address Interface ID

- Interface ID of unicast address may be assigned in different ways
 - Auto-configured from a 64-bit EUI-64 or expanded from a 48-bit MAC
 - Auto-generated pseudo-random number (to address privacy concerns)
 - Assigned via DHCP
 - Manually configured

IPv6 Interface Identifier (EUI-64 format)

- This format expands the 48 bit MAC address to 64 bits by inserting FFFE into the middle 16 bits
 - Non-ethernet interfaces use the first MAC address in the pool on the router
 - Cisco devices 'bit-flip' the 7th bit •

MAC Address

Ciscoliv/P

Randomised IID and Privacy Extensions

- Enabled by default on Microsoft Windows
- Enable/disable via GPO or CLI

netsh interface ipv6 set global randomizeidentifiers=disabled store=persistent netsh interface ipv6 set privacy state=disabled store=persistent

- Alternatively, use DHCP to a specific pool
- Randomised address are generated for non-temporary autoconfigured addresses including public and link-local
- Randomised addresses engage Optimistic DAD

Link Level - Prefix Length Considerations

64 bits

- Recommended by RFC3177 and IAB/IESG
- Consistency makes management easy
- MUST for SLAAC (MSFT DHCPv6 also)
- Significant address space loss (18.466 Quintillion)

> 64 bits

- Address space conservation
- Special cases: /126—valid for p2p /127—valid for p2p if you are careful – RFC6164 (RFC3627) /128—loopback
- Must avoid overlap with specific addresses: Router Anycast (RFC3513) Embedded RP (RFC3956) ISATAP addresses

/64 everywhere

- /64 + /126
 - 64 on host networks
 - 126 on P2P
- /64 + /127
 - 64 on host networks
 - 127 on P2P
- /128 on loopback

The Role of Multicast

53

an

DODD

IPv6 Multicast Address (RFC 4291)

An IPv6 multicast address has the prefix FF00::/8 (1111 1111)

• Second octet defines lifetime and scope

Flags	
R = 0 $R = 1$	No embedded RP Embedded RP
P = 0 $P = 1$	Not based on unicast Based on unicast
T = 0 T = 1	Permanent address (IANA assigned) Temporary address (local assigned)

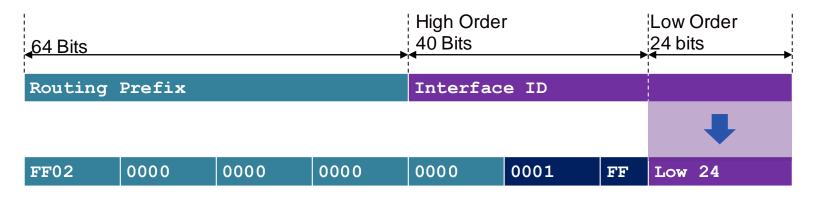
Scope	
1	Node
2	Link
3	Subnet
4	Admin
5	Site
8	Organisation
Е	Global
	/ ,

Cisco

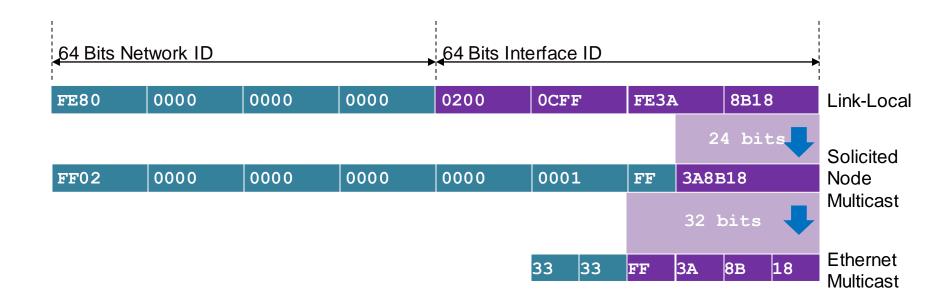
Well Known Multicast Addresses

Reference

Address	Scope	Meaning
FF01::1	Node-Local	All Nodes
FF01::2	Node-Local	All Routers
FF02::1	Link-Local	All Nodes
FF02::2	Link-Local	All Routers
FF02::5	Link-Local	OSPFv3 Routers
FF02::6	Link-Local	OSPFv3 DR Routers
FF02::1:FFXX:XXXX	Link-Local	Solicited-Node


 "02" means that this is a permanent address (t = 0) and has 'Link' scope (2)

http://www.iana.org/assignments/ipv6-multicast-addresses


Solicited-Node Multicast Address

- For each Unicast
- Used in neighbour solicitation (NS) messages
- FF02::1:FF & {lower 24 bits from IPv6 Unicast interface ID}

Solicited Node Multicast Address Example

IPv6 Interface Example

show ipv6 interface e0

Ethernet0 is up, line protocol is up

IPv6 is enabled, link-local address is FE80::200:CFF:FE3A:8B18

No global unicast address is configured

Joined group address(es):

All Nodes All Routers

FF02::1 FF02::2

FF02::1:FF3A:8B18 O Solicited Node Multicast Address

MTU is 1500 bytes

ICMP error messages limited to one every 100 milliseconds

ICMP redirects are enabled

ND DAD is enabled, number of DAD attempts: 1

ND reachable time is 30000 milliseconds

ND advertised reachable time is 0 milliseconds

ND advertised retransmit interval is 0 milliseconds

ND router advertisements are sent every 200 seconds

ND router advertisements live for 1800 seconds

Hosts use stateless autoconfig for addresses.

Link-local address (FE80::)

IPv6 Interface Configurations

BON

53

Link-Local Configured Interface Identifier Address (IOS)

ipv6 unicast-routing		Enable IPv6 routing
!		
interface FastEthernet0/0		
ip address 10.151.1.1 255.	255.255.0	
duplex auto		
speed auto	Enable IPv6 on inte	erface and automatically create link-local address
ipv6 enable O		·
!		lis col
© 2015 Cisco and/or its affiliates. All rights reserved.	Cisco Public	Cisco (VC;

IPv6 Interface with Link-Local Address r1#show ipv6 interface fast0/0 EUI-64 derived from MAC address FastEthernet0/0 is up, line protocol is up 0007.505e.9460 IPv6 is enabled, link-local address is FE80::207:50FF:FE5E:9460 Global unicast address(es): None Joined group address(es): Listening for all hosts multicast FF02::1 Listening for all routers multicast FF02::2 **O** Solicited Node multicast for link-local address FF02::1:FF5E:9460 MTU is 1500 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled Hosts use stateless autoconfig for addresses. r1# show interface fast0/0 MAC address 0007.505e.9460 FastEthernet0/0 is up, line protocol is up Hardware is AmdFE, address is 0007.505e.9460 (bia 0007.505e.9460)

Manually Configured Interface Identifier Address

IPv6 Interface with Manual Interface Address

r1#show ipv6 interface fast0/0 FastEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::207:50FF:FE5E:9460 Global unicast address(es): Routable /64 subnet 2001:db8::1, subnet is 2001:db8::/64 Global unicast address with manual interface ID of "1" Joined group address(es): FF02::1 FF02::2 Corresponding Solicited Node multicast address for manual interface ID FF02::1:FF00:1 • Corresponding Solicited Node multicast address for Link-Local interface ID FF02::1:FF5E:9460 MTU is 1500 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled Hosts use stateless autoconfig for addresses.

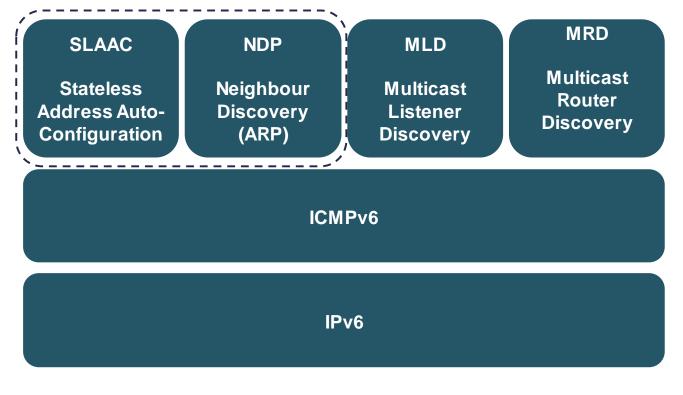
EUI-64 Configured Interface Identifier Address


```
ipv6 unicast-routing
!
interface FastEthernet0/0
ip address 10.151.1.1 255.255.255.0
duplex auto
speed auto
ipv6 address 2001:db8::/64 eui-64 •
Enables IPv6 and assigns a global prefix and EUI-64 interface ID
```

Cisco

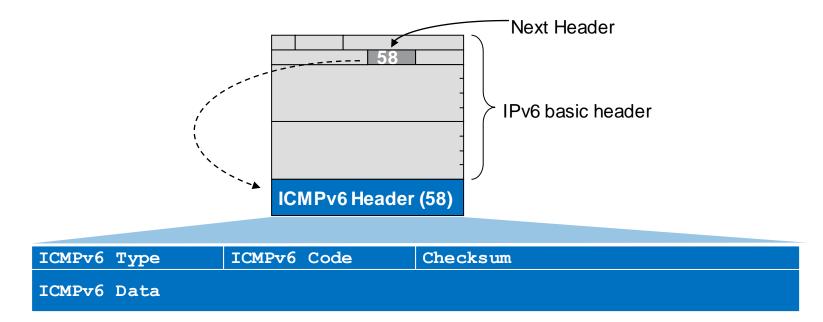
IPv6 Interface with EUI-64 Interface Address

r1#show ipv6 interface fast0/0 Link-Local address with EUI-64 interface ID FastEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::207:50FF:FE5E:9460 • Global unicast address(es): Manually configured address with EUI-64 Interface ID 2001:db8::207:50FF:FE5E:9460, subnet is 2001:db8::/64 • Joined group address(es): FF02::1 Solicited Node multicast for both manual and link-local address FF02::2 FF02::1:FF5E:9460 MTU is 1500 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled Hosts use stateless autoconfig for addresses. r1#show interface fast0/0 MAC address 0007.505e.9460 used for EUI-64 FastEthernet0/0 is up, line protocol is up Hardware is AmdFE, address is 0007.505e.9460 (bia 0007.505e.9460)


ICMPv6 and Neighbour Discovery

BON

53



ICMPv6

ICMPv6 Header

 Also used for Neighbour Discovery, Path MTU discovery and Multicast Listener Discovery (MLD)

Neighbour Discovery Messages (ND) R

Reference

Message	Purpose	ICMP Code	Sender	Target
Router Solicitation (RS)	Prompt routers to send RA	133	Nodes	All routers
Router Advertisement (RA)	Advertise default router, prefixes Operational parameters	134	Routers	Sender of RS All nodes
Neighbour Solicitation (NS)	Request link-layer of target	135	Node	Solicited Node Target Node
Neighbour Advertisement (NA)	Response to NS (solicited) Advertise link-layer address change (Unsolicited)	136	Nodes	Sender of NS

47

Router Solicitation and Advertisement (RS & RA)			
Router Solicitation		Router Advertisement	
ІСМР Туре	133	ІСМР Туре	134
IPv6 Source	Link Local (FE80::1)	IPv6 Source	Link Local (FE80::2)
IPv6 Destination	All Routers Multicast (FF02::2)	IPv6 Destination	
Query	Please send RA	Data	()
		Data	Options, subnet prefix, lifetime, autoconfig flag

- Router solicitations (RS) are sent by booting nodes to request RAs for configuring the interfaces
- Routers send periodic Router Advertisements (RA) to the all-nodes multicast address

Cisco

Neighbour Solicitation & Advertisement (NS & NA)

Neighbour Solicitation		Neighbour Advertisment	
ІСМР Туре	135	ІСМР Туре	136
IPv6 Source	A Unicast	IPv6 Source	B Unicast
IPv6 Destination	B Solicited Node Multicast	IPv6 Destination	A Unicast
Target / Options	B Unicast / FE80:: address of A	Data	FE80:: address of B, MAC Address
Query	What is B link layer address?		

Neighbour Cache Entry States

Reference

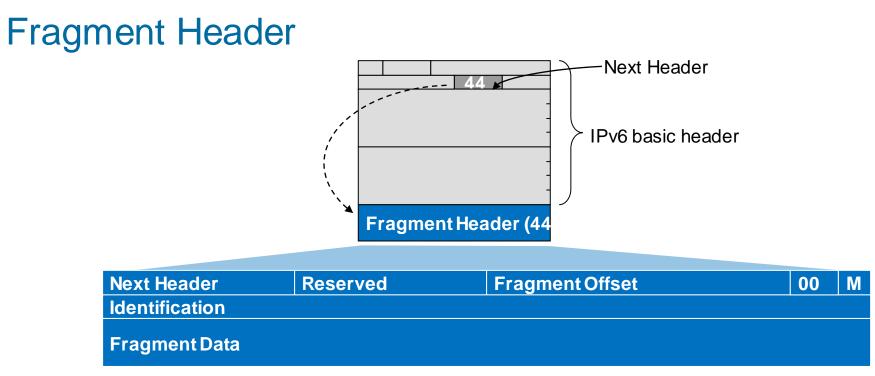
- INCOMPLETE
 - Address resolution is in progress and the link-layer address of the neighbour has not yet been determined
- REACHABLE
 - The neighbour is known to have been reachable recently (within tens of seconds ago)
- STALE
 - The neighbour is no longer known to be reachable but until traffic is sent to the neighbour, no attempt should be made to verify its reachability
- DELAY
 - Delay sending probes for a short while in order to give upper layer protocols a chance to provide reachability confirmation
- PROBE
 - The neighbour is no longer known to be reachable, and unicast Neighbour Solicitation probes are being sent to verify reachability

DAD Ex	ample		Reference
Tentative IP FE80::260:8FF:FE52	2:F9D8		Actual IP FE80::260:8FF:FE52:F9D8
NS		NA	
ІСМР Туре	135 (Neighbour Solicitation)	ІСМР Туре	135 (Neighbour Solicitation)
Ethernet DA	33-33-FF-52-F9-D8	Ethernet DA	33-33-00-00-01
IPv6 Header		IPv6 Header	
IPv6 Source	::	IPv6 Source	FE80::260:8FF:FE52:F9D8
IPv6 Destination	FF02::1:FF52:F9D8	IPv6 Destination	FF02::1
	NS Header		NA Header
Target Address	FE80::260:8FF:FE52:F9D8	Target Address	FE80::260:8FF:FE52:F9D8
J		Neighbo	our Discovery Option
		Target MAC	00-60-08-52-F9-D8
			li ed

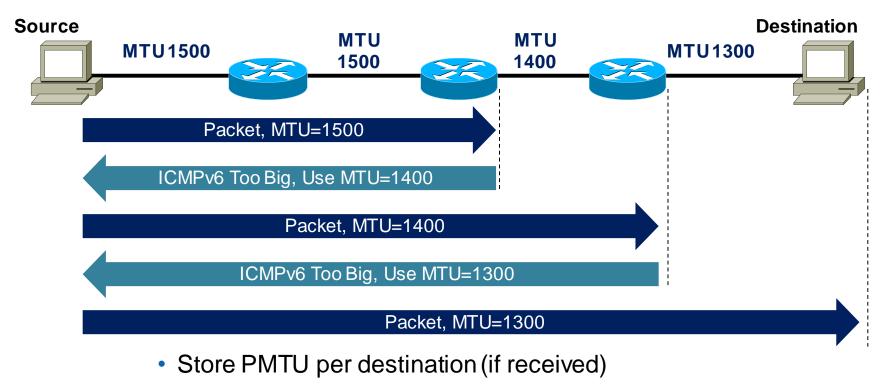
Fragmentation and Path MTU Discovery

BON

53


11 III

Fragmentation in IPv6


- Unfragmentable part
 - IPv6 header plus any headers that must be processed by the nodes enroute
 - Repeated with fragments appended to it following the "fragment header"
- Fragmentable part
 - The headers that need to be processed only by the destination node = the end-to-end headers + upper layer header and data
 - Fragmentable part is divided into pieces with length multiple of 8 octets
- Minimum MTU for IPv6 is 1280 bytes
 - All links MUST support it

- Fragmentation is left to end devices in IPv6
 - Routers do not perform fragmentation
- Fragment header used when an end node has to send a packet larger than the path MTU

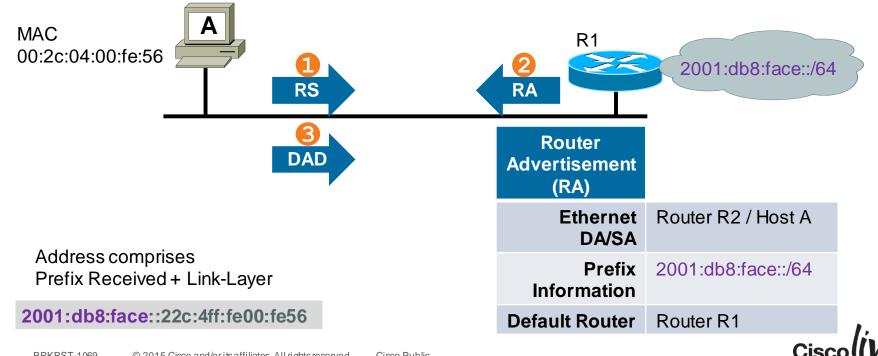
Path MTU Discovery

• Age out PMTU (10 mins), reset to first link MTU

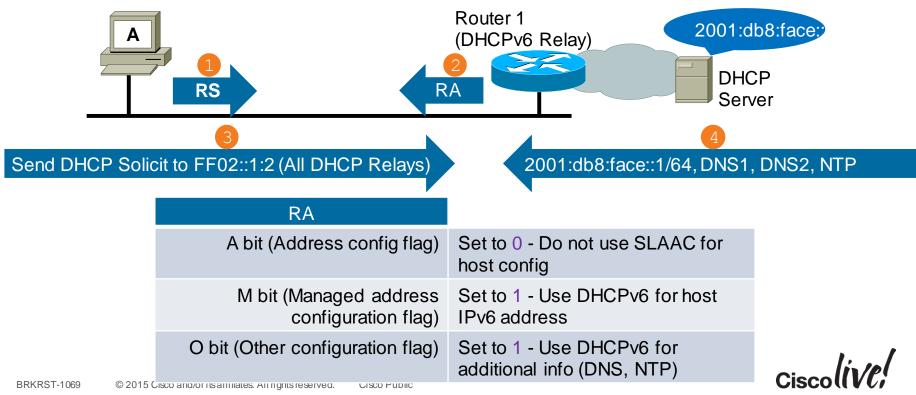
Host Address Assignment

DODD

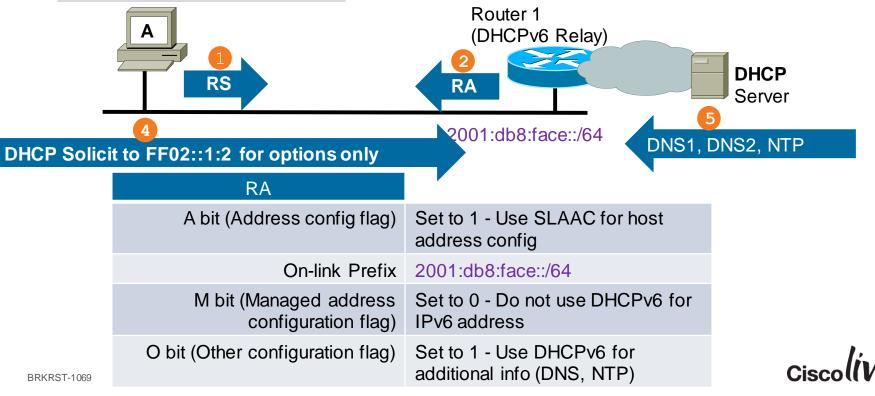
53


IPv6 Host Address Assignment Methods

- Manual Assignment
- Stateless Address Autoconfiguration (SLAAC RFC 4862)
 - Allows auto assignment of address
- Stateful DHCPv6 (RFC 3315)
 - Allows DHCPv6 to allocate IPv6 address plus other configuration
- DHCPv6-PD (RFC 3633)
 - Allows DHCPv6 to allocate entire subnets to a router/CPE device
- Stateless DHCPv6 (RFC 3736)
 - SLAAC for host address allocation and DHCPv6 for other configuration


Stateless Address Autoconfiguration (RFC4862)

SLAAC is used to automatically assigned an address to a host "plug and play"


Router Advertisement for Stateful DHCPv6

• RA message contain flags that indicate address allocation combination (A, M and O bits)

Router Advertisement for Stateless DHCPv6

- RA message contain flags that indicate address allocation combination (A, M and O bits)
- 3 2001:db8:face::22c:4ff:fe00:fe56

DHCPv6 Configuration Options

A bit (default) just use SLAAC

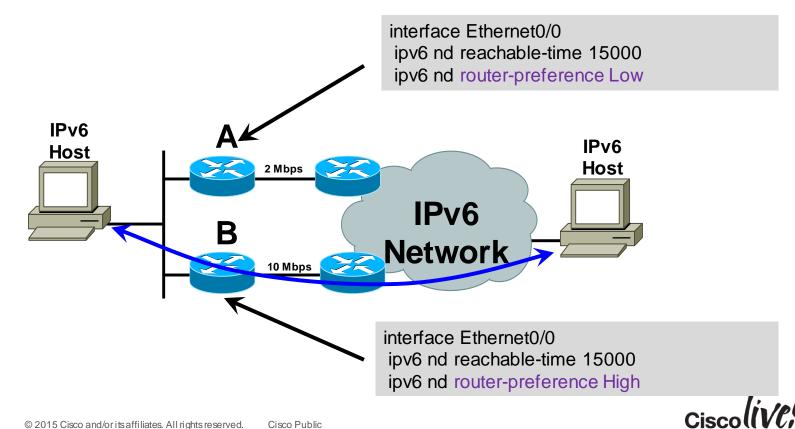
interface e0/0 ipv6 address 2001:db8:1000::1/64

M bit & O bit (Stateful DHCP)

interface e0/0 ipv6 address 2001:db8:1000::1/64 ipv6 nd managed-config-flag ipv6 nd other-config-flag ipv6 dhcp relay destination 2001:db8::10 A bit & O bit (Stateless DHCP)

interface e0/0 ipv6 address 2001:db8:1000::1/64 ipv6 nd other-config-flag ipv6 dhcp relay destination 2001:db8::10

Host gets address and other SLAAC options. Nothing else


Host gets full stateful config from DHCP server (2001:db8::10)

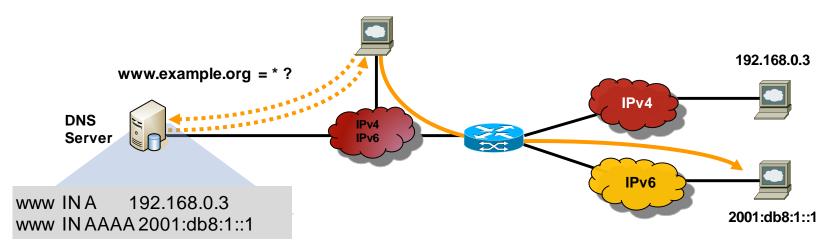
Host get address from SLAAC and other config from DHCP server (2001:db8::10)

Default Router Selection

Domain Name System (DNS)

BON

53



IPv6 and DNS Entries

Function	IPv4	IPv6
Hostname to IP Address	A Record www.abc.test. IN A 92.168.30.1	AAAA Record (Quad A) www.abc.test. IN AAAA 2001:db8:C18:1::2
IP Address To Hostname	PTR Record 1.30.168.192.in-addr.arpa. IN PTR www.abc.test.	PTR Record 2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0.8.1.c.0.8.b.d.0. 1.0.0.2.ip6.arpa IN PTR www.abc.test.

Dual Stack Approach and DNS

- In a dual stack case an application that:
 - Is IPv4 and IPv6-enabled
 - Can query the DNS for IPv4 and/or IPv6 records (A) or (AAAA) records
 - Chooses one address and, for example, connects to the IPv6 address

Routing IPv6 – How To Tell Everyone About It!

BBIN

53

in all

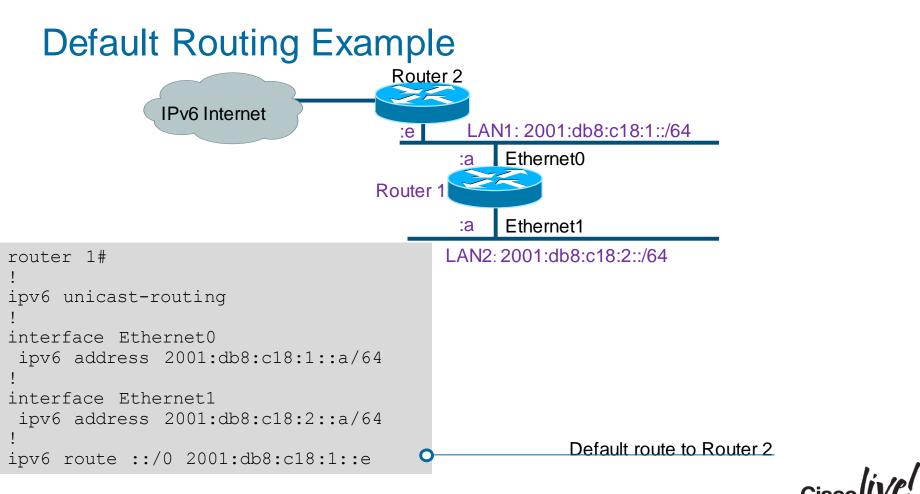
Overview of Routing Protocols in IPv6

- Routing in IPv6 is unchanged from IPv4
 - Still has two families of routing protocols: IGP and EGP
 - Still uses the longest-prefix match routing algorithm
- IGP
 - RIPng (RFC 2080)
 - Cisco EIGRP for IPv6
 - Integrated IS-IS for IPv6 (RFC 5308)
 - OSPFv3 (RFC 5340)
- EGP
 - MP-BGP4 (RFC 4760) and Using MP-BGP for IPv6 (RFC 2545)
- Cisco IOS supports all IPv6 routing protocols

Static Routing

- Similar to IPv4
- Next hop / interface is required

Static routing CLI for IPv6

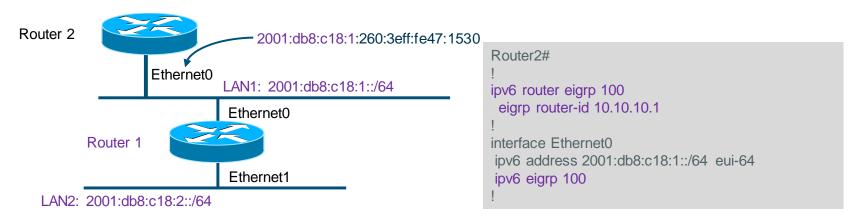

ipv6 route ipv6-prefix/prefix-length {ipv6-address | interface-type interface-number [ipv6-address]} [administrative-distance] [administrative-multicast-distance | unicast | multicast] [tag tag]

Router(config)# ipv6 route 2001:db8::0/32 2001:db8:1:1::1 10

Router(config)# ipv6 route 2001:db8::/32 ethernet 1/0 fe80::215:c7ff:fe21:8640

Forward a packets via link-local NH

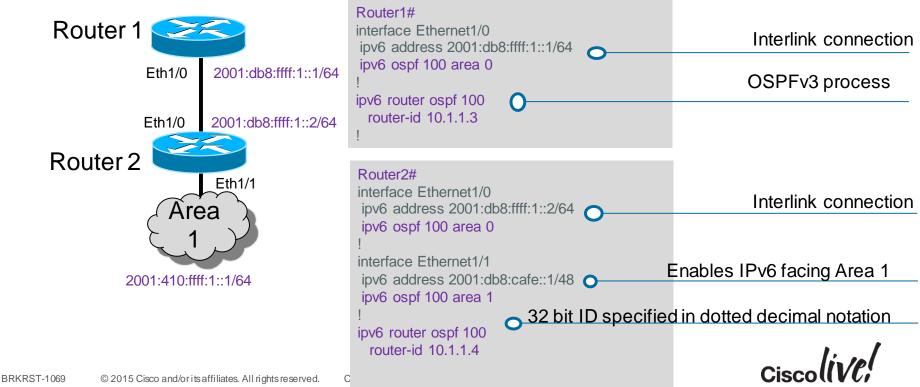
Forward a packets via NH using admin of 10

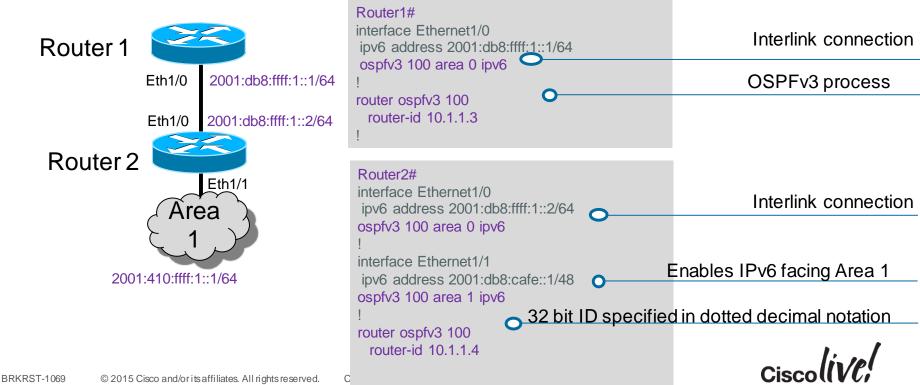

EIGRP for IPv6 Features

- Three new TLVs introduced
- Hello messages use FF02::A (all EIGRP routers)
- Automatic summarisation is disabled by default for IPv6 (unlike IPv4)
- Check "shutdown" mode
- RID stays at 32 bits

EIGRP for IPv6 Configuration

BRKRST-1069

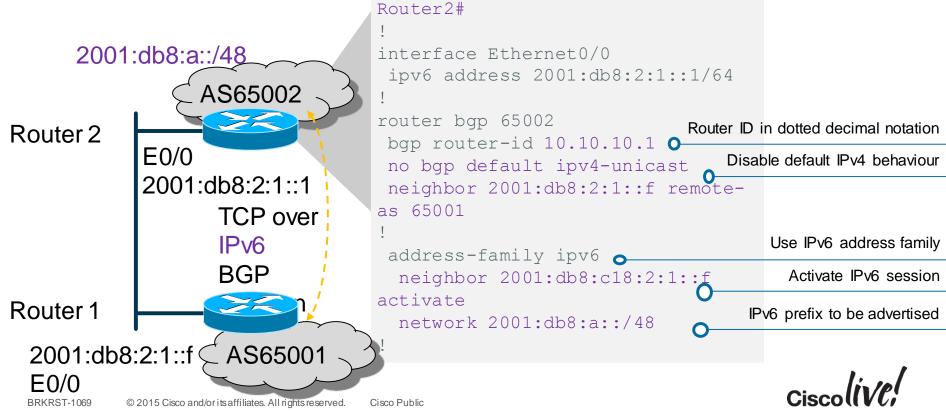



OSPFv3 Overview

- OSPFv3 is OSPF for IPv6 (RFC 5340)
- Based on OSPFv2 with enhancements
- Distributes IPv6 prefixes only
- Ships-in-the-night with OSPFv2
- No in-protocol Authentication

OSPFv3 Configuration Example Classic IOS syntax

OSPFv3 Configuration Example Unified IOS syntax

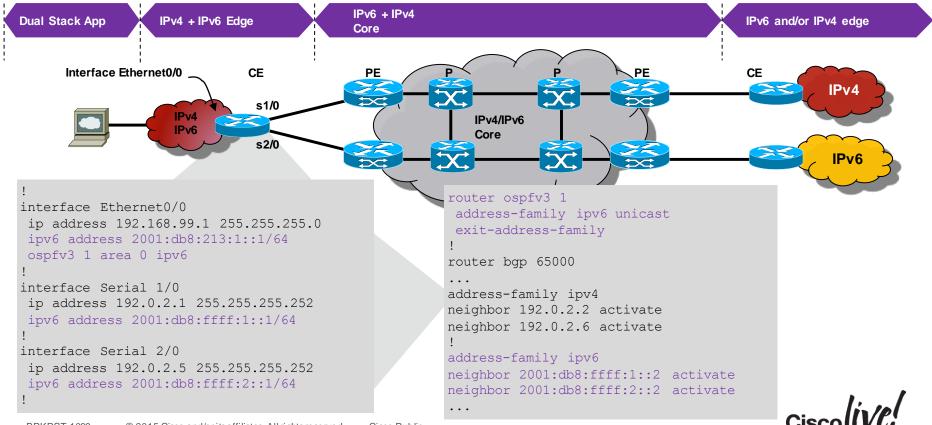


MP-BGP for IPv6 Overview

- TCP Interaction
 - BGP-4 runs over a TCP (179) session using IPv4 or IPv6
 - The NLRI BGP carried (IPv4, IPv6, MPLS) is agnostic of the session protocol
- Router ID
 - BGP router-id must still exist is in 32 bit dotted decimal notation
- Next-hop contains a global IPv6 address (or potentially a link local address)
- Link local address as a next-hop is only set if the BGP peer shares the subnet with both routers (advertising and advertised)

BGP IPv6 Configuration Global Address Peering

Putting It All Together


53

an

DODD

Dual Stack Configuration

Q&A

NIN DE

53

DODD

-

17

.....

Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2015 T-Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site
 <u>http://showcase.genie-connect.com/clmelbourne2015</u>
- Visit any Cisco Live Internet Station located throughout the venue

T-Shirts can be collected in the World of Solutions on Friday 20 March 12:00pm - 2:00pm

Learn online with Cisco Live! Visit us online after the conference for full access to session videos and presentations. <u>www.CiscoLiveAPAC.com</u>

Thank you.

111

#