

TOMORROW starts here.

VRF, MPLS and MPBGP Fundamentals

BRKCRT-2601

Andre Laurent, 3X CCIE/CCDE

#clmel

Agenda

- Introduction to Virtualisation
- VRF-Lite
- MPLS BGP Free Core
- MP-BGP
- Conclusion

Introduction

53

DODD

MPLS The Common Perception

- CE Routers owned by customer
- PE Routers owned by SP
- Customer "peers" to "PE" via IP
- Exchanges routing with SP via routing protocol (or static route)
- Customer relies on SP to advertise routes to reach other customer CEs

Enterprise Network Virtualisation Key Building Blocks

Device Partitioning

Virtualised Interconnect

"Virtualising" the Routing and Forwarding of the Device

Extending and Maintaining the "Virtualised" Devices/Pools over Any Media

Device Partioning Layer 2 vs. Layer 3 Virtualisation

VLAN—Virtual LAN

- Virtualise at Layer 2 forwarding
- Associates to one or more L2 interfaces on switch
- Has its own MAC forwarding table and spanning-tree instance per VLAN
- Interconnect options?

VLANs are extended via a physical cable or virtual 802.1q trunk

VRF—Virtual Routing and Forwarding

- Virtualise at Layer 3 forwarding
- Associates to one or more Layer 3 interfaces on router/switch
- Each VRF has its own

Forwarding table (CEF)

Routing process (RIP, EIGRP, OSPF, BGP)

Interconnect options (VRF-Lite)?

802.1q, GRE, sub-interfaces, physical cables, signalling

Path Isolation Functional Components

Device virtualisation

- Control plane virtualisation
- Data plane virtualisation
- Services virtualisation

Data path virtualisation

- Hop-by-Hop VRF-Lite End-to-End
- Multi-Hop VRF-Lite GRE
- MPLS-VPN
- MPLS VPN over IP
- MPLS VPN over DMVPN
- MPLS VPN o GRE/mGRE

VRF-Lite

53

DODD

PPen

17

- Defined router supports routing (RIB), forwarding (FIB), and interface per VRF
- Leverages "Virtual" encapsulation for separation:
 - Ethernet/802.1Q, GRE, Frame Relay
- The routing protocol is also "VRF aware"
 - RIP/v2, EIGRP, OSPF, BGP, static (per VFR)
- Layer 3 VRF interfaces cannot belong to more than a single VRF

VRF-Lite End-to-End

Target Requirements

- End to End segmentation, per VRF and per interface
- Targets a small number of VRFs as requirement
- Seen frequently in Access → Distribution (vs. end to end)
- No MP-BGP or control plane signalling is required and does not use labels
- No LDP is required (i.e. MPLS)
- Still leverages existing QoS model and supports IP multicast
- Full range of platform support within the Cisco portfolio of switches and routers

VRF-Lite Sub-interface Example

Per VRF: Virtual Routing Table Virtual Forwarding Table Locally Significant

Ciscolive

VRF-Lite Sub-interface Configuration

Command Line Interface (CLI) Review

ip vrf <u>VRF-R</u> rd 1:1

interface FastEthernet0/0.12 ip vrf forwarding <u>VRF-R</u>

interface Loopback1 ip vrf forwarding <u>VRF-R</u>

ip vrf <u>VRF-E</u> rd 2:2

interface FastEthernet0/0.112 ip vrf forwarding <u>VRF-E</u>

interface Loopback2 ip vrf forwarding <u>VRF-R</u>

ip vrf <u>VRF-O</u> rd 3:3

interface FastEthernet0/0.212 ip vrf forwarding <u>VRF-O</u>

interface Loopback3 ip vrf forwarding <u>VRE-R</u>

VRF Aware RIP Configuration

Command Line Interface (CLI) Review

routerrip		
version 2		
network 1.0.0.0		
network 10.0.0.0		
no auto-summary		
routorrip		
routerrip		
router rip !		
router rip ! address-family ipv4 vrf VRF-R		
router rip ! address-family ipv4 vrf VRF-R network 1.0.0.0		
router rip ! address-family ipv4 vrf VRF-R network 1.0.0.0 network 10.0.0.0		
router rip ! address-family ipv4 vrf VRF-R network 1.0.0.0 network 10.0.0.0 no auto-summary		
router rip ! address-family ipv4 vrf VRF-R network 1.0.0.0 network 10.0.0.0 no auto-summary version 2		

RIP leverages address-family ipv4 vrf

Similar to what you already know!

VRF Aware EIGRP Configuration

Command Line Interface (CLI) Review

router eigrp 10 network 1.1.1.1 0.0.0.0 network 10.1.112.0 0.0.0.255 no auto-summary

router eigrp 10 auto-summary ! address-family ipv4 vrf VRF-E network 1.1.1.1 0.0.0.0 network 10.1.112.0 0.0.0.255 no auto-summary autonomous-system 10 exit-address-family

EIGRP leverages address-family ipv4 vrf

Set unique autonomous system number per VRF

Similar to what you already know!

VRF Aware OSPF Configuration

Command Line Interface (CLI) Review

router ospf 1 log-adjacency-changes network 1.1.1.1 0.0.0.0 area 1 network 10.1.212.0 0.0.0.255 area 0

router ospf 2 vrf VRF-O log-adjacency-changes network 1.1.1.1 0.0.0.0 area 1 network 10.1.212.0 0.0.0.255 area 0

OSPF leverages vrf ______ after the unique process number

Similar to what you already know!

Live Exploration

11 II II

53

DODD

No Sub-interface Support/No Problem

Configuration Note: Each GRE Tunnel Could Require Unique Source/Destination IP (Platform Dependent)

VRF-Lite Tunnel Configuration

Command Line Interface (CLI) Review

ip vrf <u>VRF-S</u> rd 11:11

interface Loopback11 ip address 11.11.11.11 255.255.255.255 (Global Routing Table)

interface Tunnel12 ip vrf forwarding VRF-S ip address 10.1.12.1 255.255.255.0 tunnel source Loopback11 tunnel destination 22.22.22.22

ip vrf <u>VRF-E</u> rd 22:22

interface Loopback12 ip address 22.22.22.22 255.255.255.255 (Global Routing Table)

interface Tunnel12 ip vrf forwarding VRF-S ip address 10.1.12.2 255.255.255.0 tunnel source Loopback22 tunnel destination 11.11.11.11

BRKCRT-2601 © 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public

Similar to what you already know!

ip route vrf VRF-S 2.2.2.2 255.255.255.255 10.1.12.2

ip route vrf VRF-S 1.1.1.1 255.255.255.255 10.1.12.1

Configuration Note: Leveraging Back-to-Back Frame-Relay Configuration

VRF-Lite Back-to-Back Frame Relay Configuration

Command Line Interface (CLI) Review

ip vrf <u>VRF-B</u> rd 111:111

interface Serial0/0 encapsulation frame-relay

Interface Serial0/0.12 ip vrf forwarding VRF-B ip address 10.1.12.1 255.255.255.0 frame-relay interface-dlci 201 no keepalive

ip vrf <u>VRF-B</u> rd 222:222

interface Serial0/0 encapsulation frame-relay

Interface Serial0/0.12 ip vrf forwarding VRF-B ip address 10.1.12.2 255.255.255.0 frame-relay interface-dlci 201 no keepalive

Similar to what you already know!

router bgp 1 address-family ipv4 vrf VRF-B neighbour 10.1.12.2 remote-as 2 neighbour 10.1.12.2 activate no synchronisation network 1.1.1.1 mask 255.255.255.255 exit-address-family

router bgp 2 address-family ipv4 vrf VRF-B neighbour 10.1.12.1 remote-as 1 neighbour 10.1.12.1 activate no synchronisation network 2.2.2.2 mask 255.255.255.255 exit-address-family

Live Exploration

11 II II

53

DODD

VRF-Lite Summary

- Leverages VRF in router (RIB/FIB, interface) and interface for segmentation
- No MPLS, LDP, or BGP required
- Optimal solution when VRF count is small (~ <8)
- Scale usually dependent on routing protocol
- Supports multicast and QoS solutions
- If you understand routing protocols then you already understand PE-CE VRF Routing

MPLS – BGP Free Core

53

am

DODD

- 1. Always route towards BGP Next-Hop
- 2. Routes will be valid on PE Routers
- 3. Routing will break when reaches the P Routers as they are not participating in BGP

Cisc

Could run BGP all the way through or redistribute routes into OSPF, but why!

IP Routing IGP vs. BGP

- Exchange of IP routes for Loopback Reachability
 – OSPF, IS-IS, EIGRP, etc.
- iBGP neighbour peering over IGP transport
- Route towards BGP Next-Hop

Ciscolive;

What Is MPLS?

Multi	Multi-Protocol: The ability to carry any payload
Protocol	Have: IPv4, IPv6, Ethernet, ATM, FR
Label	Uses Labels to tell a node what to do with a packet; separates forwarding (hop by hop behaviour) from routing (control plane)
Switching	Routing == IPv4 or IPv6 lookup. Everything else is Switching.

MPLS Path (LSP) Setup with LDP

Assignment of Remote Labels

- Local label mapping are sent to connected nodes
- Receiving nodes update forwarding table
 - Out label
- LDP label advertisement happens in parallel (downstream unsolicited)

MPLS Traffic Forwarding with LDP

Hop-by-hop Traffic Forwarding Using Labels

- Ingress PE node adds label to packet (push)
 - Via forwarding table
- Downstream node use label for forwarding decision (swap)
 - Outgoing interface
 - Out label
- Egress PE removes label and forwards original packet (pop)

BGP MPLS in Core

Cisco

- 1. Always route towards BGP Next-Hop
- 2. Routes will be valid on PE Routers
- 3. Will label switch towards BGP Next-Hop with MPLS enabled

End-to-End BGP and redistribution of routes into OSPF not necessary!

Live Exploration

11 II II

53

DODD

MP-BGP

53

DODD

PPen

17

.....

MPLS VPN Technology - Refresher

CE Routers

- VRF Associates to one or more interfaces on PE
- Has its own routing table and forwarding table (CEF)
- VRF has its own instance for the routing protocol
 - (static, RIP, BGP, EIGRP, OSPF)

PE Routers

- MPLS Edge routers
- MPLS forwarding to P routers
- IGP/BGP IP to CE routers
- Distributes VPN information through MP-BGP to other PE routers with VPN-IPv4 addresses, extended community, VPN labels

P Routers

- P routers are in the core of the MPLS cloud
- P routers do not need to run BGP
- Do not have knowledge of VPNs
- Switches packets based on labels (push/pop) not IP

Multi Protocol BGP (MPBGP)

Bringing It All Together

- 1. PE1 receives an IPv4 update on a VRF interface (eBGP/OSPF/ISIS/RIP/EIGRP)
- 2. PE1 translates it into VPNv4 address
 - Assigns an RT per VRF configuration
 - Rewrites next-hop attribute to itself
 - Assigns a label based on VRF and/or interface
- 3. PE1 sends MP-iBGP update to other PE routers

Cisco Public

Live Exploration

11 II II

53

DODD

Closing Tips

Personal Insights

- Separate the building blocks of "MPLS" to foster an improved understanding
- Don't over complicate things
- PE-CE VRF based routing is not much different than regular routing
- MPLS LDP Configuration is pretty simple
- MPBGP and traditional IPv4 BGP configuration is nearly the same
- If routes are not present on CE routers check route-target import/export and redistribution between IPv4 VRF address-families under IGP and BGP
- If routes are present but you are having problems with reachability, check MPLS configuration
- Remember that on PE devices you are living in a VRF world

Q&A

11 III

53

DODD

-

17

.....

Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2015 T-Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site
 <u>http://showcase.genie-connect.com/clmelbourne2015</u>
- Visit any Cisco Live Internet Station located throughout the venue

T-Shirts can be collected in the World of Solutions on Friday 20 March 12:00pm - 2:00pm

Learn online with Cisco Live! Visit us online after the conference for full access to session videos and presentations. <u>www.CiscoLiveAPAC.com</u>

Thank you.

