TOMORROW starts here.

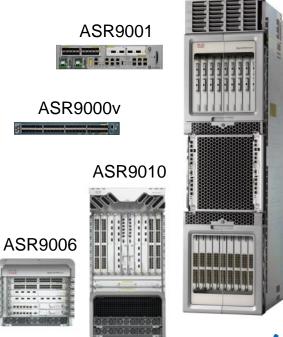
11 11 11 CISCO

ASR-9000/IOS-XR Hardware Architecture, QOS, EVC, IOS-XR Configuration and Troubleshooting

BRKSPG-2904

LJ Wobker Technical Marketing Engineer High End Routing & Optical Group

Level Setting


- Apologies for the accent throw things when I talk too fast.
- Impossible to give a truly thorough talk on all these topics ;-)
- Most of the output/show command slides are for reference
- Infinite time to answer questions...
- but not in this room within this specific session...
- Meet the engineer and/or World of Solutions is your friend

Cisco ASR9000 – Next-Gen Edge Routing Platform

Key Design Goals & System Benefits

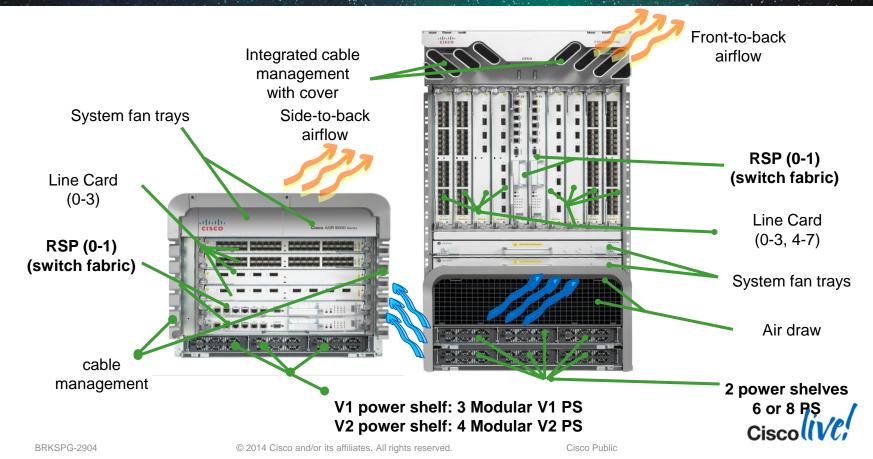
- Architectural Design for Longevity
- Product Portfolio with significant HW and SW commonality
- Highly integrated network processors
- Cisco IOS XR based
 - Truly modular, full distributed OS
 - Enhanced for the Edge (L2 and L3)
- nV (Network Virtualisation) for Operational Simplicity

© 2014 Cisco and/or its affiliates. All rights reserved.

ASR9922

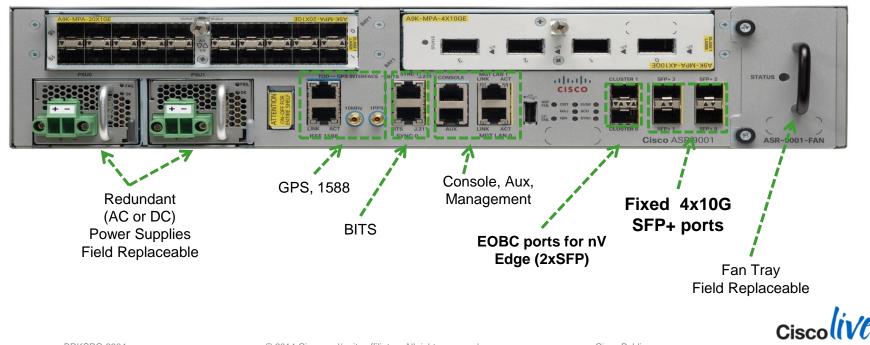
Agenda

- ASR 9000 Hardware Overview
 - System Introduction and Chassis Overview
 - System Components: RPs, fabric, linecards
- IOS XR software overview
- ASR 9000 QoS architecture & configuration
- Cisco nV Network Virtualisation
 - nV satellite
 - nV edge
- Q&A



Ciscolive!

ASR 9000 Hardware Overview


ASR 9010 and ASR 9006 Chassis (circa 2008)

ASR 9001 Compact Chassis Shipping Since XR 4.2.1, May 2012

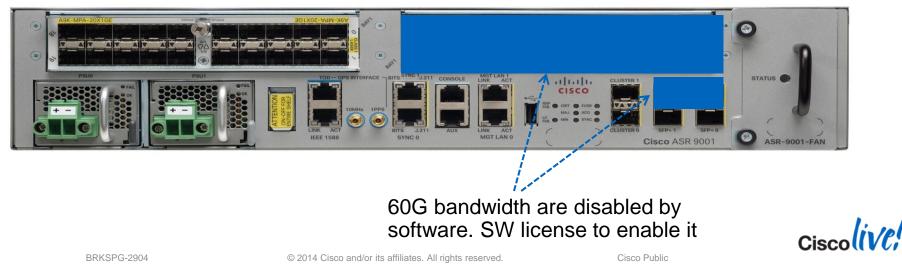
Sub-slot 0 with MPA

Sub-slot 1 with MPA

ASR 9001-S Compact Chassis

Shipping Since XR4.3.1, May 2013

Supported MPAs:


20x1GE 2x10GE 4x10GE 1x40GE

Pay As You Grow

- Low entry cost
- SW License upgradable to full 9001

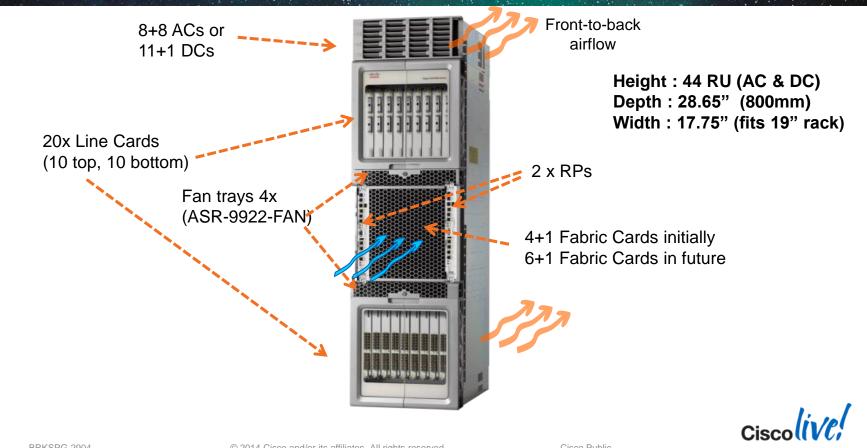
Sub-slot 0 with MPA

Sub-slot 1 with MPA

ASR 9904 Shipping Since 5.1.0, Sep 2013

Feature	Description	
I/O Slots	2 I/O slots	
Rack size	6RU	
Fan	Side to Side Airflow 1 Fan Tray, FRU	
RSPs	RSP440, 1+1	
Power	1 Power Shelf, 4 Power Modules 2.1 KW DC / 3.0 KW AC supplies	
Fabric Bandwidth		
SW	XR 5.1.0 – August 2013	

ASR 9912 Chassis

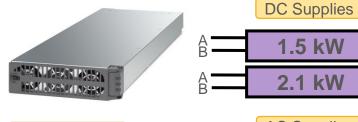

Shipping Since XR4.3.2 & 5.1.0, Sep 2013

Features	Description	
Fan	2 Fan Trays Front to back airflow	
I/O Slots	10 I/O slots	
Rack Size	30 RU	
RP	1+1 RP redundancy	
Fabric	6+1 fabric redundancy	
Power	3 Power Shelves, 12 Power Modules 2.1 KW DC / 3.0 KW AC supplies N+N AC supply redundancy N:1 DC supply redundancy	
Bandwidth	Phase 1: 550Gb per Slot Future: 2+Tb per Slot	EEEE/
SW	XR 4.3.2 & 5.1.0	

© 2014 Cisco and/or its affiliates. All rights reserved.

ASR 9922 Chassis

Cisco (ive)



System Components

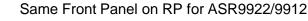
Power and Cooling

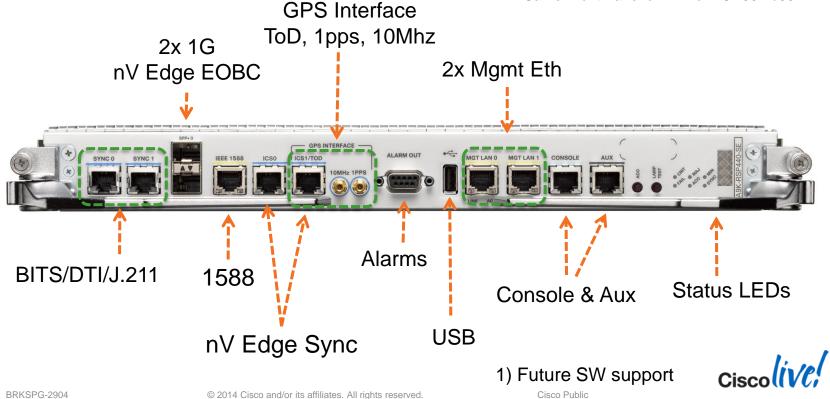
- Fans unique to chassis
- Variable speed for
 - ambient temperature variation
- Redundant fan-tray
- Low noise, NEBS and OSHA compliant

Power Supply

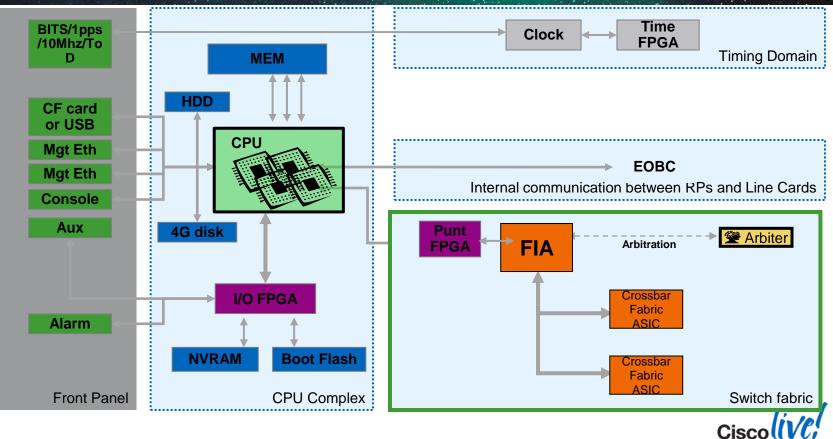
А	1.5 kW		
А <u>—</u>	2.1 kW		
	AC Supplies		
Α	3 kW		
в ——	3 kW		

- Single power zone
- All power supplies run in active mode
- Power draw shared evenly
- 50 Amp DC Input or 16 Amp AC for Easy CO Install


Control Processors (RP and RSP) RSP used in ASR9006/ASR9010, RP used in ASR9922


	RSP	RSP440	9922-RP
Cores			
Processors	PPC/Freescale	Intel x86	Intel x86
	2 Core 1.5GHz	4 Core 2.27 GHz	4 Core 2.27 GHz
RAM	RSP-4G: 4GB	RSP440-TR:	-TR: 6GB
	RSP-8G: 8GB	6GB RSP440-SE: 12GB	-SE: 12GB
nV EOBC ports	No	Yes, 2 x 1G/10G SFP+	Yes, 2 x 1G/10G SFP+
Switch fabric bandwidth	92G + 92G	220+220G	660+110
	(with dual RSP)	(with dual RSP)	(7-fabric model)

Ciscolive,


RSP440 – Faceplate and Interfaces

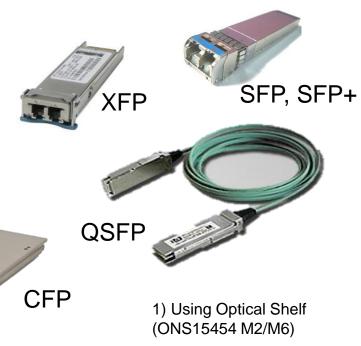
RSP Engine Architecture

ASR 9000 Ethernet Line Card Overview

ASR 9000 ISM (Integrated Service Module)

CDS Streaming: TV and internet streaming Error repair

CGN (carrier grade NAT): NAT44, DS-Lite NAT64


Feature	ASR 9000 ISM Capabilities	
Applications	Ultra-Dense VoD, TV, Internet Streaming, Error Repair, CGv6	
Bandwidth	30-40 Gbps streaming capacity ~3 Gbps cache fill rate	
Compatibility	Works with all CDS appliances	
Concurrent Streams	Up to 8,000 SD equivalent	
Content Cache	3.2 TBytes at FCS - Modular Design	
Video Formats	MPEG2 & AVC/H.264	
Transport	MPEG over UDP / RTP	
Session Protocols	RTSP / SDP	
Environmental	NEBS / ETSI compliant	

CDS: Manage 8,000 streams up to 40G per second CGv6: 20M translations, 1M translations/sec., ~15Gbps throughput / ISM

ASR 9000 Optical Interface Support

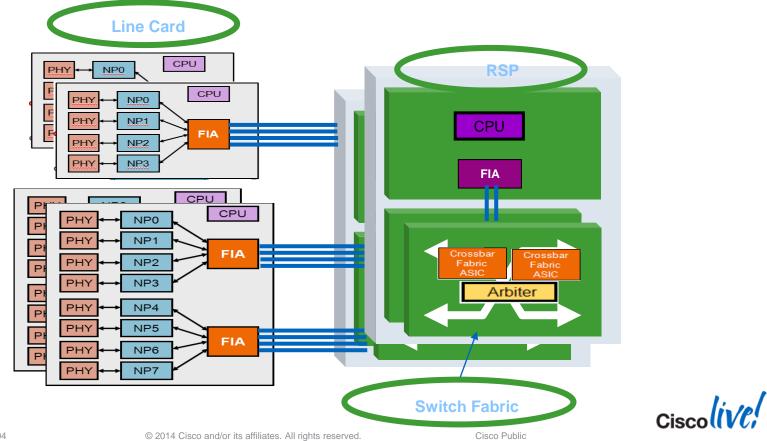
- All linecards use transceivers
- Based on density and interface type
 1GE (SFP) T, SX, LX, ZX, CWDM/DWDM
 - 10GE (XFP & SFP+): SR, LR, ZR, ER, DWDM
 - 40GE (QSFP): SR4, LR4
 - 100GE (CFP): SR10, LR4, DWDM ¹⁾

For latest Transceiver Support Information

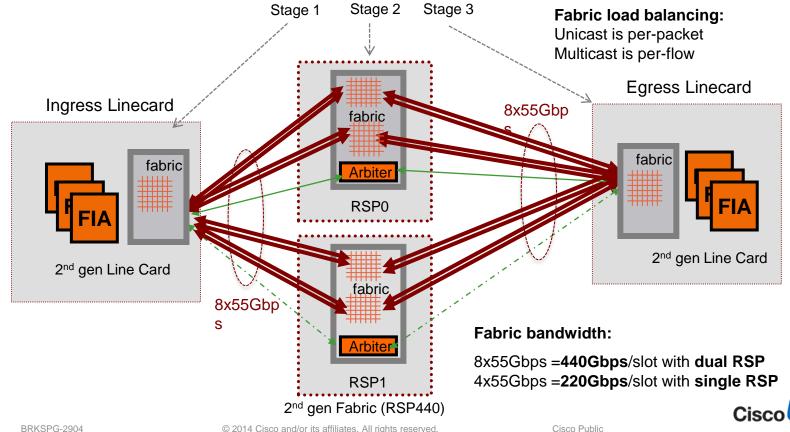
http://www.cisco.com/en/US/prod/collateral/routers/ps9853/data_sheet_c78-624747.html

© 2014 Cisco and/or its affiliates. All rights reserved.

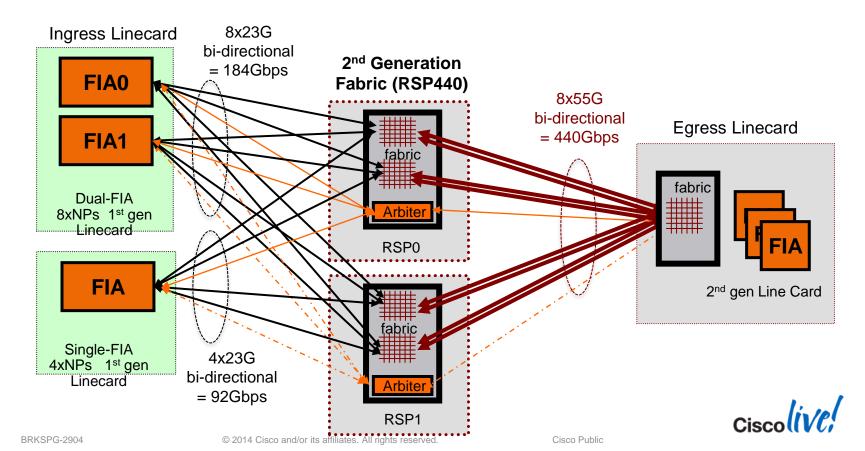
d.


Cisco Public

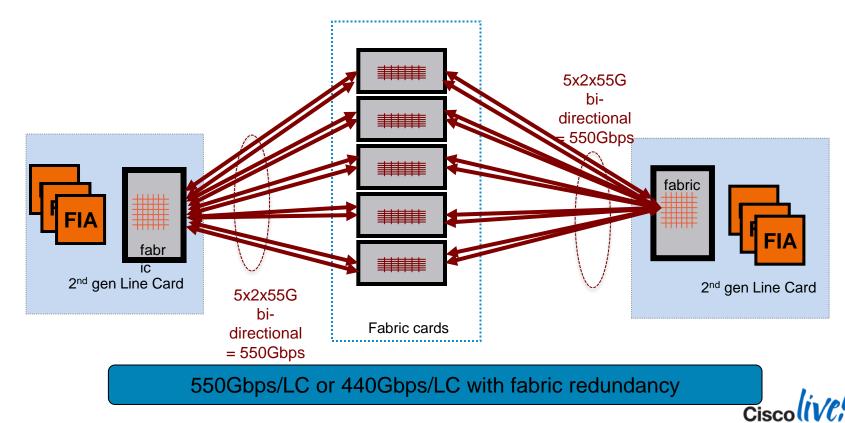
Ciscolive!


Fabric Architecture

Cisco ASR9000 System Architecture

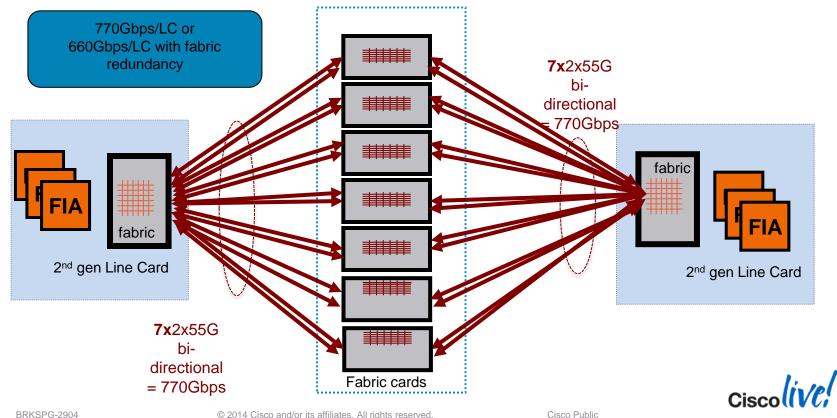

BRKSPG-2904

ASR9000 Switch Fabric Overview



© 2014 Cisco and/or its affiliates. All rights reserved.

1st/2nd Generation Switch Fabric Compatibility


ASR 9912/9922 Fabric Architecture : 5-plane System

© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco Public

ASR 9912/9922 Fabric Architecture : 7-plane System

© 2014 Cisco and/or its affiliates. All rights reserved.

Ciscolive!

Linecard Architecture

Generic Linecard Architecture – Components

Pluggable physical interfaces

BRKSPG-2904

- speeds: GE, 10GE, 40GE, 100GE
- form factors: SFP, SFP+, XFP, QSFP, CFP
- media/reach: T, SR, LR, ZR, LR4, SR10
- colours: gray, CWDM, DWDM, Tunable

Network Processor

- forwarding and feature engine for the LC
- scales bandwidth via multiple NPs
 - up to 8 NPs/LC for performance vs. density options

PH

- highly integrated silicon as opposed to multiple discrete components
 - shorter connections, faster communication channels
 - higher performance, density with lower power draw

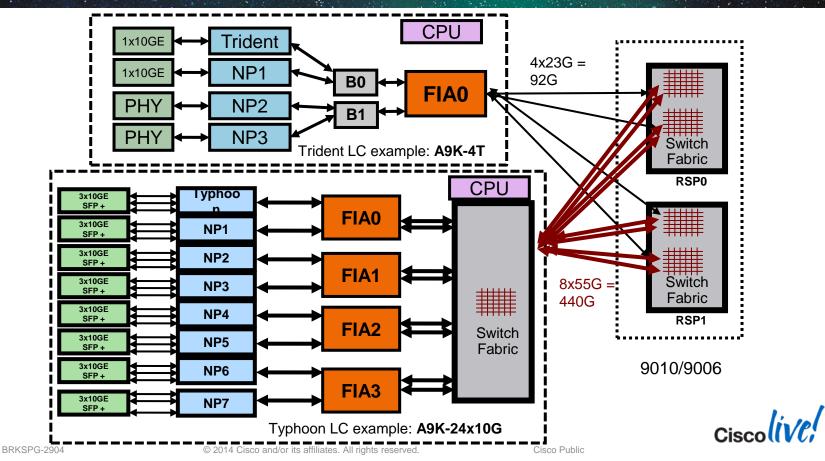
Fabric Interface ASIC

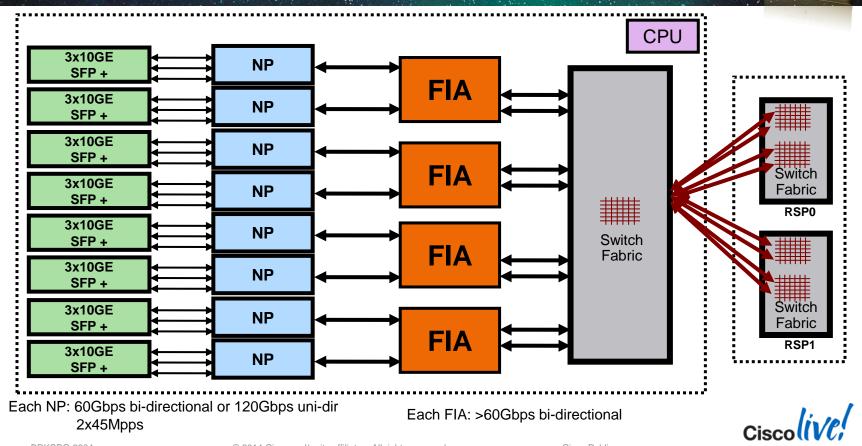
- interface between forwarding processor and switch fabric
- arbitration, framing, accounting in HW
- provides buffering and virtual output queuing for the switch fabric
- QoS awareness for Hi/Lo and ucast/mcast
 - total flexibility regarding relative priority of unicast vs. multicast

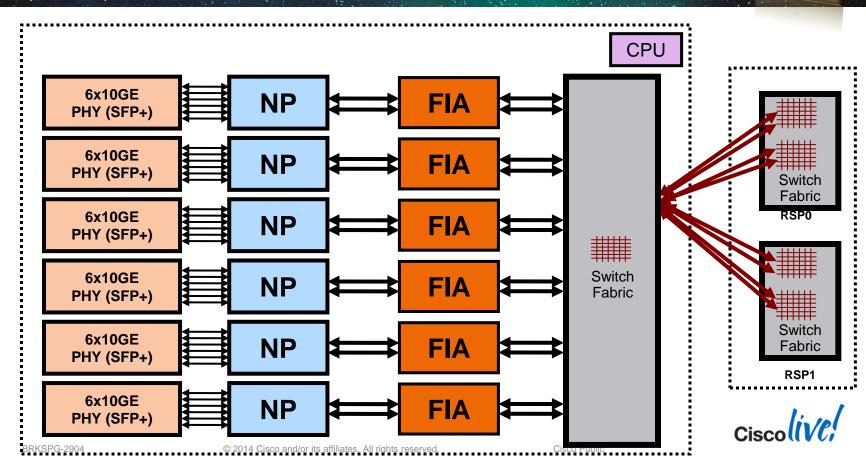
Cisco Public

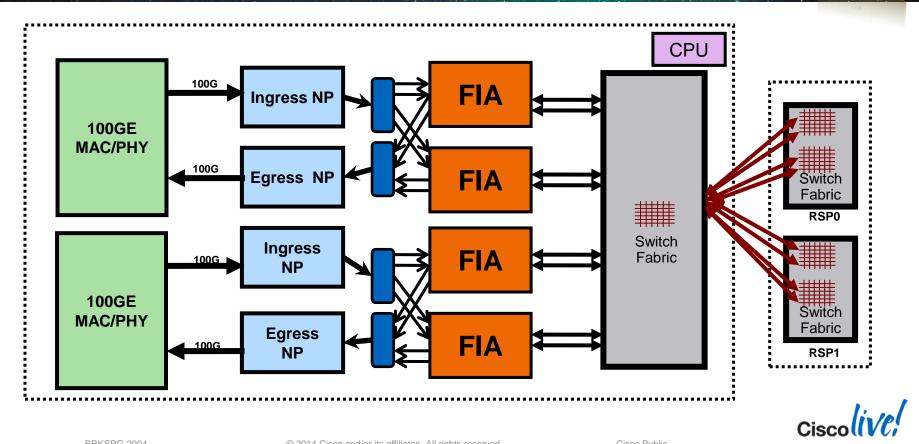
FIA

Inline Netflow

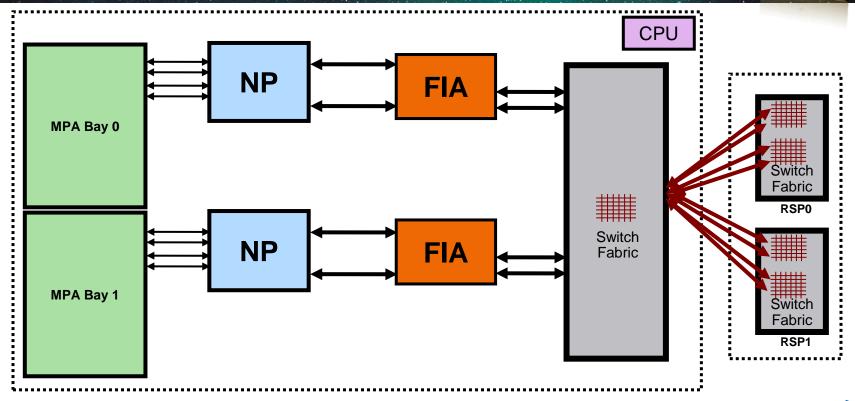

SW switched packets


Program HW forwarding tables


CPU

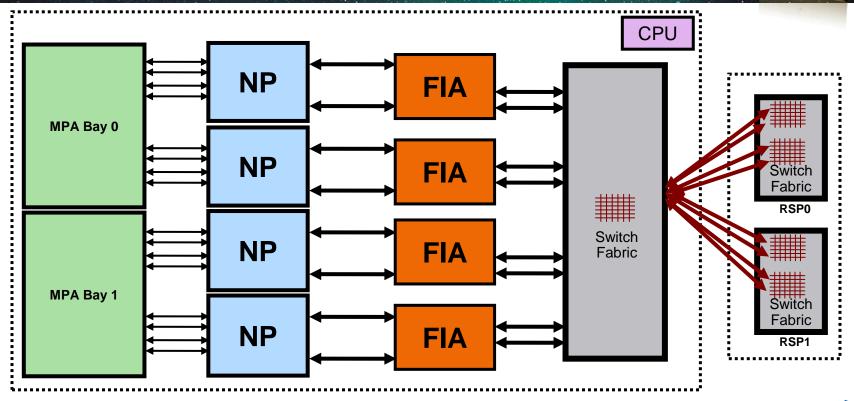

ASR 9000 Line Card Architecture Overview

2port 100GE Linecard Architecture

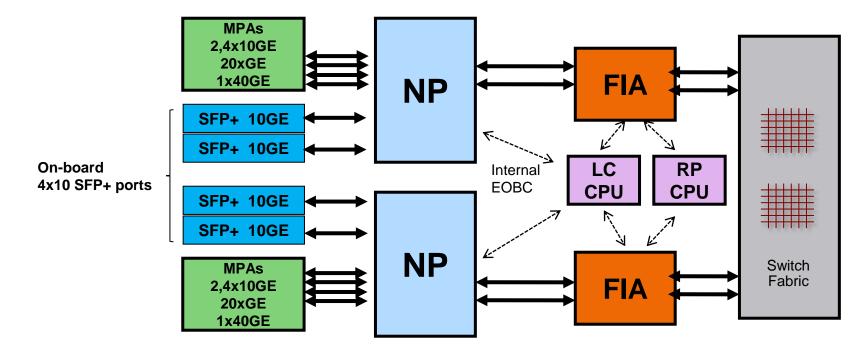


BRKSPG-2904

© 2014 Cisco and/or its affiliates. All rights reserved.

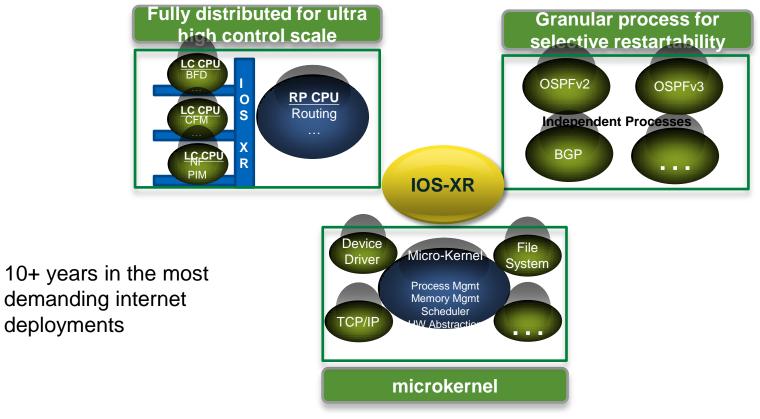

Cisco Public

Module Cards – MOD80


Module Cards – MOD160

ASR9001 Architecture

Same Hardware Components as the Modular Systems



Ciscolive!

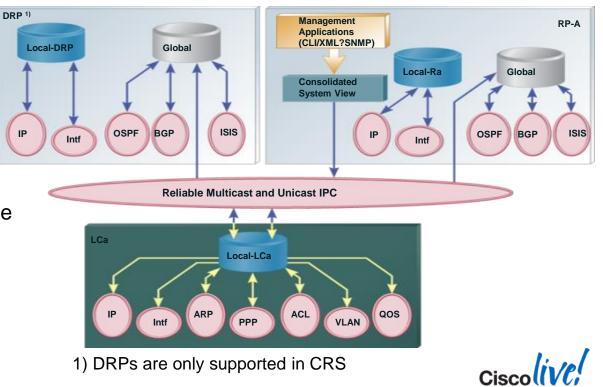
Cisco IOS-XR Overview

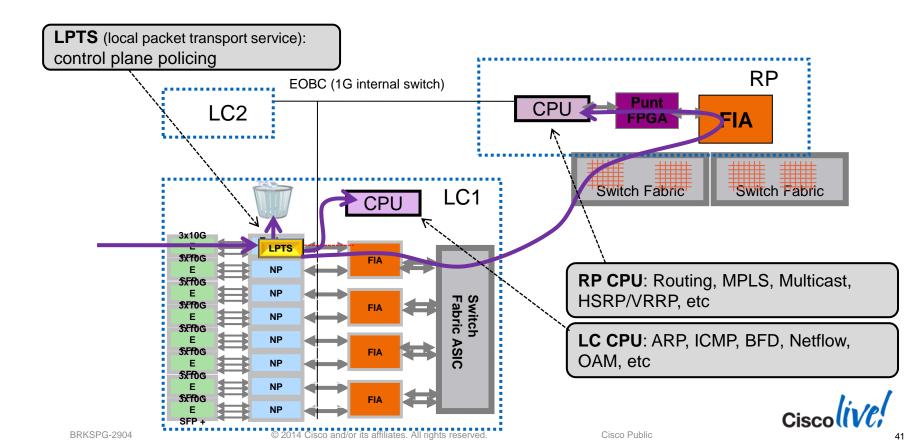
Industry Hardened IOS XR Modular, Fully Distributed

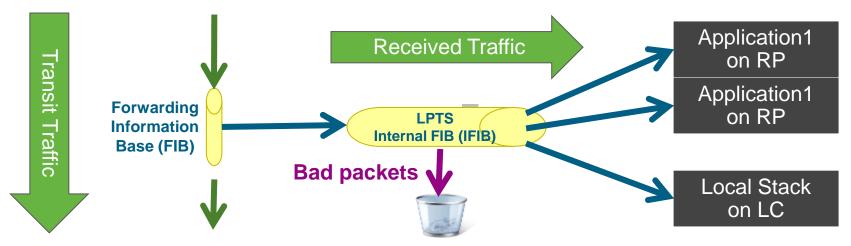
© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco IOS-XR – High Level Benefits

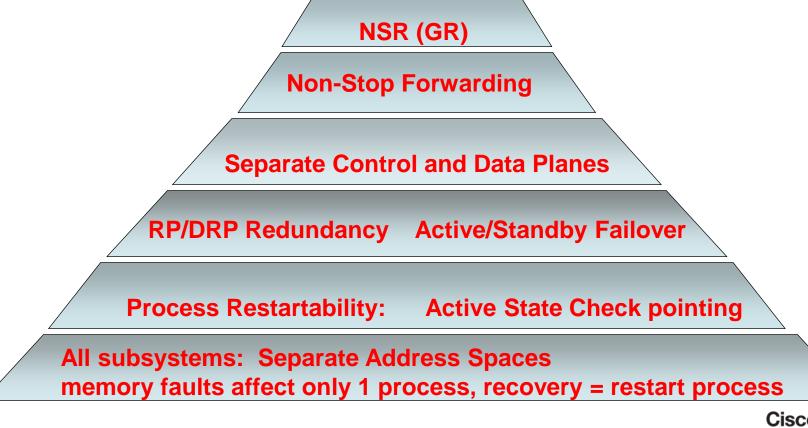
- Modular Runtime SW upgrade/downgrade support
- Distributed scalable with multi chassis support
- Platform Independent POSIX compliant
- Management Interface Unified Data Model (XML)
- High Availability Hot Standby and Process Restart
- Security Control, Data and Management Plane


Cisco IOS-XR Software Modularity


- Ability to upgrade independently MPLS, multicast, routing protocols and linecards
- Ability to release software packages independently
- Ability to have composites into one manageable unit if desired
- Notion of optional packages if technology not desired on device : (Multicast, MPLS)


Distributed In-Memory Database

- Reliable Multicast IPC improves scale and performance
- Distributed data management model improves performance and Scale
- Single Consolidated view of the system eases maintenance


Local Packet Transport Services (LPTS)

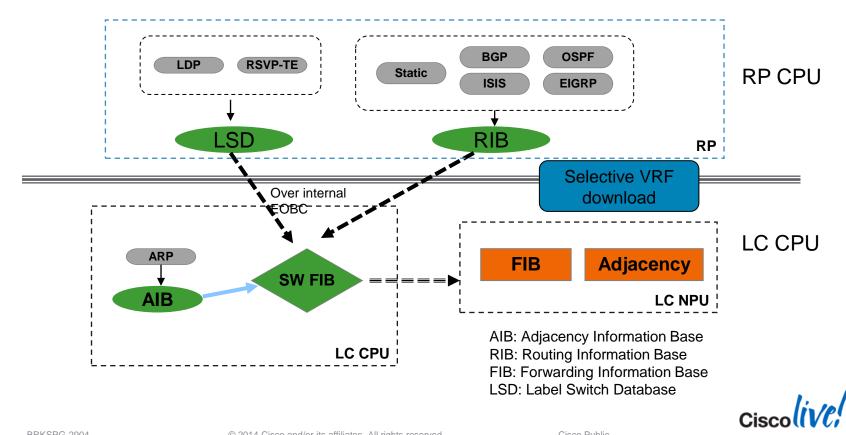
- LPTS enables applications to reside on any or all RPs, DRPs, or LCs
 - Active/Standby, Distributed Applications, Local processing
- IFIB forwarding is based on matching control plane flows
 - Built in dynamic "firewall" for control plane traffic
- LPTS is transparent and automatic

IOS-XR High Availability Software Design Principles

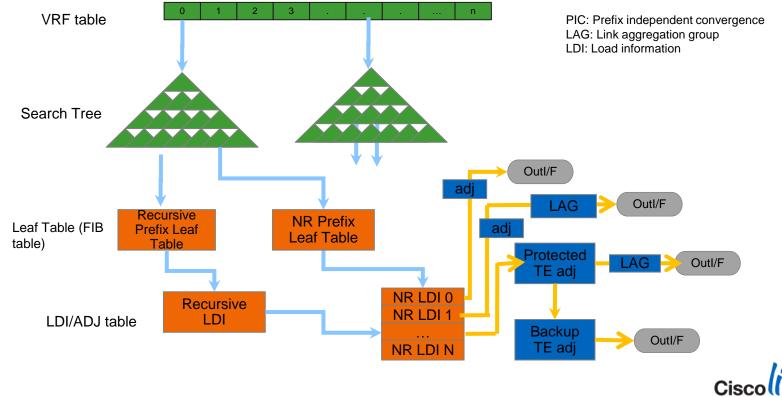
© 2014 Cisco and/or its affiliates. All rights reserved.

Software Maintenance Updates (SMUs)

- Allows for software package installation/removal leveraging on Modularity and Process restart
- Redundant processors are not mandatory (unlike ISSU) and in many cases is non service impacting and may not require reload.
- Mechanism for
 - delivery of software features (e.g. Multicast, MPLS)
 - delivery of critical bug fixes without the need to wait for next maintenance release

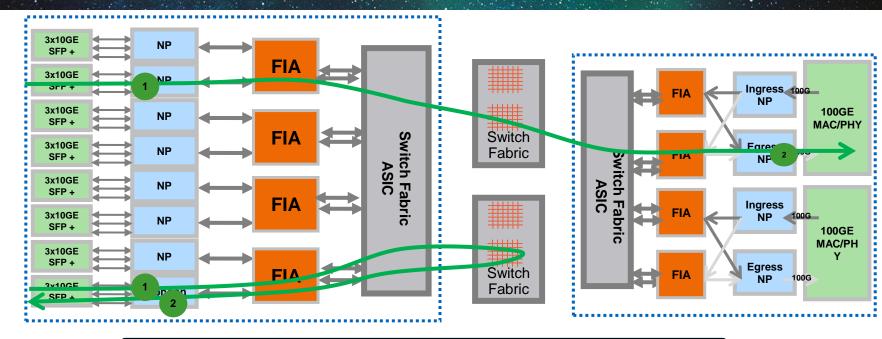


Cisco live,



Control Plane and Packet Forwarding Infrastructure

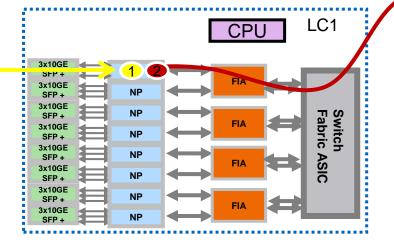
Layer 3 Control Plane Overview

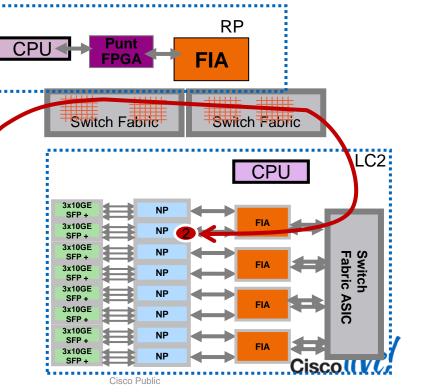


Hierarchical Layer 3 Forwarding Data Structure Enabling Prefix Independent Convergence for TE FRR, BGP, LAG

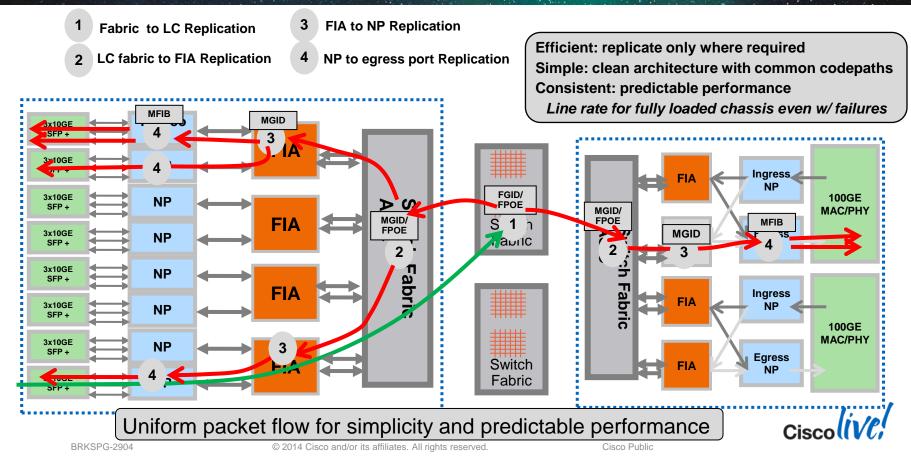
IOS-XR Two-Stage Forwarding Overview

Scalable and Predictable


Uniform packet flow for simplicity and predictable performance

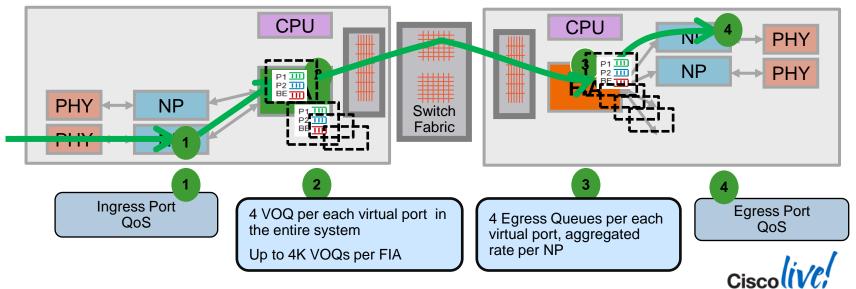

MAC Learning and Sync

 NP learn MAC address in hardware (around 4M pps)


NP flood MAC notification (data plane) message to all other NPs in the system to sync up the MAC address system-wide. MAC notification and MAC sync are all done in hardware

Hardware based MAC learning: ~4Mpps/NP

Multicast Replication Overview

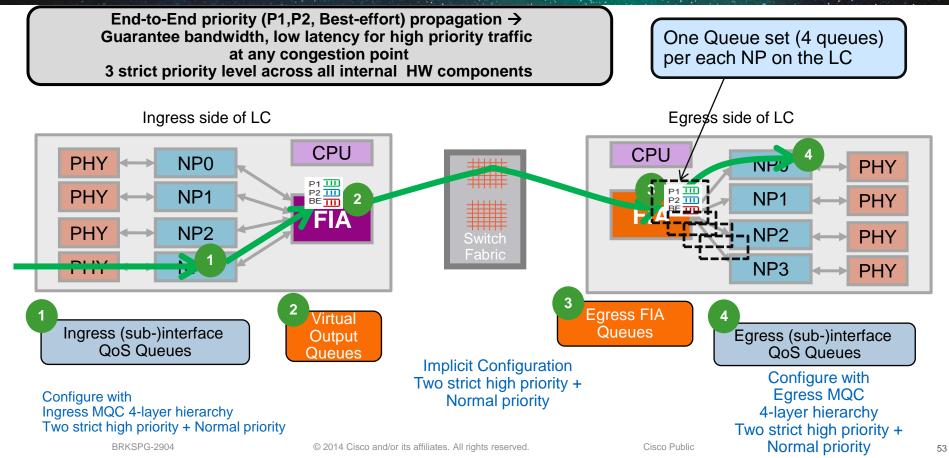


End-to-End priority (P1,P2, 2xBest-effort) propagation Unicast VOQ and back pressure Unicast and Multicast separation

Ingress side of LC

Egress side of LC

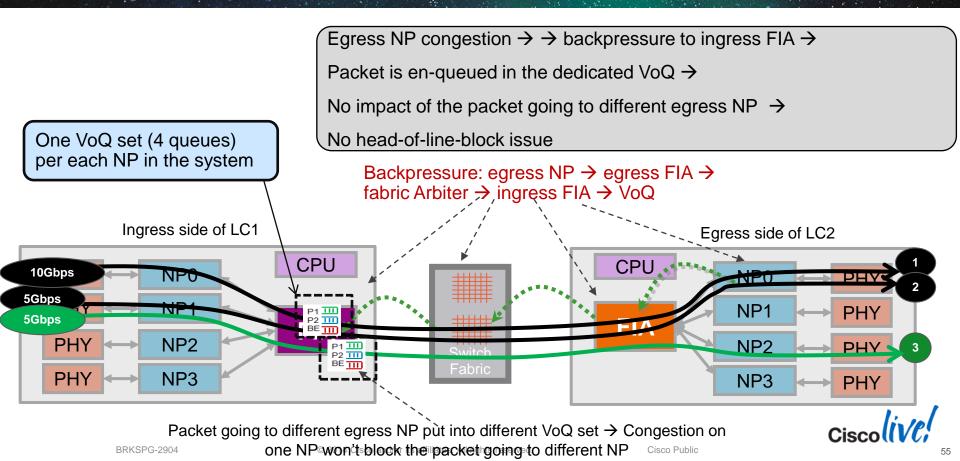
Cisco Public


© 2014 Cisco and/or its affiliates. All rights reserved.

Ciscolive!

QOS Architecture

System QoS Refresh



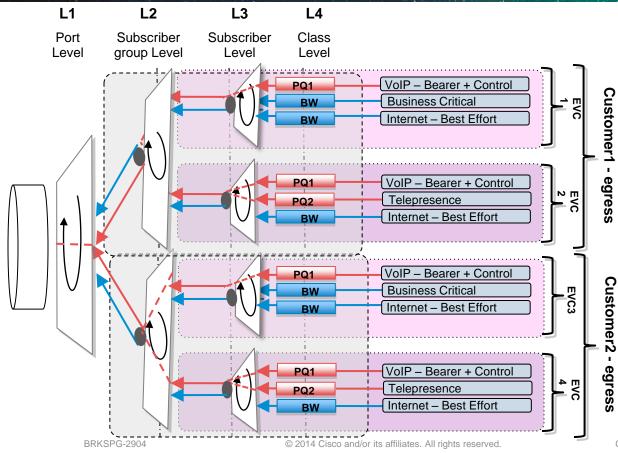
Arbitration & Fabric QoS

- Arbitration is being performed by a central high speed arbitration ASIC on the RSP
- At any time a single arbiter is responsible for arbitration (active/active "APS like" protection)
- The Arbitration algorithm is QOS aware
 - ensure that P1 classes have preference over P2 classes, both of which have preference over non-priority classes
- Arbitration is performed relative to a given the egress VQI

System QoS Refresh (3) – Backpressure and VoQ Mechanism

MQC to System QOS Mapping

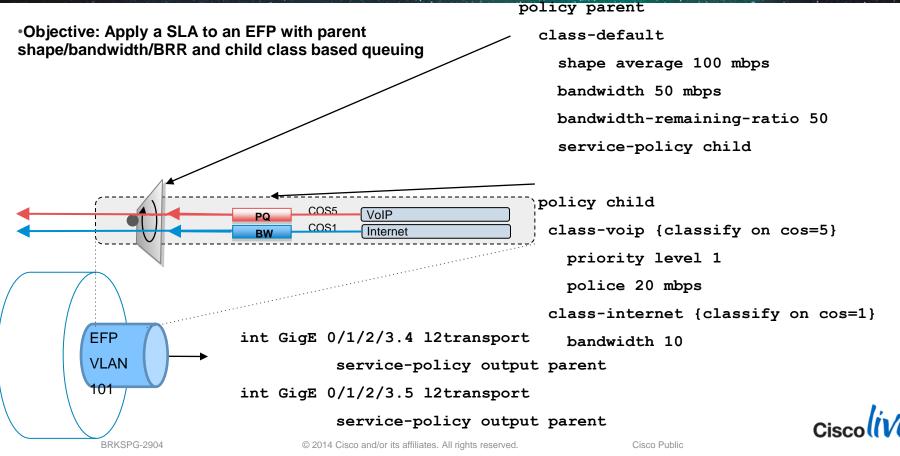
- ASR 9000 supports traffic differentiation at all relevant points within the system
 - Priority awareness at all interfaces: P1 > P2 > Low/Normal
- Classification into these priorities is based on *input MQC classification* on the ingress linecard into P1, P2, Other
 - a packet classified into a **P1 class** on ingress is mapped to PQ1 system queue
 - a packet classified into a **P2 class** on ingress is mapped to PQ2 system queue
 - a packet classified into a non-PQ1/2 class on ingress will get mapped to LP queue along the system qos path
- Note: The marking is implicit once you assign a packet into a given queue on ingress; its sets the fabric header priority bits onto the packet.
 - no specific "set" action is required the priority level is taken from the MQC class configuration



ASR 9000 QOS Implicit Trust

- For Bridged packets on ingress outermost COS would be treated as trusted.
- For Routed packets on ingress DSCP/Precedence/outermost EXP would be treated as trusted based on packet type.
- Default QOS will be gleaned from ingress interface before QOS marking is applied on the ingress policymap.
- By default ASR 9000 would never modify DSCP/IP precedence of a packet without a policy-map configured.
- Default QOS information would be used for impositioned fields only

4 Layer Hierarchy Overview


Note: We count hierarchies as follows: 4L hierarchy = 3 Level nested pmap 3L hierarchy = 2 level nested pmap L1 level is not configurable but is implicitly assumed Hierarchy levels used are determined by how many nested levels a policy-map is configured for and applied to a given

subinterface

Max 8 classes (L4) per subscriber level (L3) are supported

3 Layer Hierarchy Example

ASR9K QoS Classification Criteria

Very flexible L2/L3 field classification on L2 interfaces

- Inner/outer cos
- Inner/Outer vlan *
- DEI*
- Outer EXP
- Dscp/Tos
- TTL, TCP flags, source/destination L4 ports
- Protocol
- Source/Destination IPv4
- Source/Destination MAC address*
- Discard-class
- Qos-group
- match all/match any
- Note:
 - Not all fields are supported on L3 interfaces*
 - Some fields don't make sense on ingress (e.g. dicard-class, qos-group)
 - MPLS classification is based on EXP only

ASR9K QoS - Classification Formats

 Per Policy-map a given classification format is chosen by SW, i.e a given policy-map can only classify based on a single format

	Format 0	Format 1	Format 2	Format 3
Fields supported	-IPV4 source address (Specific/Range) ^[1] -IPV4 Destination address (Specific/Range) -IPV4 protocol -IP DSCP / TOS / Precedence -IPV4 TTL -IPV4 Source port (Specific/Range) -IPV4 Destination port (Specific/Range) -TCP Flags -QOS-group (output policy only) -Discard-class (output-policy only)	-Outer VLAN/COS/DEI -Inner VLAN/COS -IPV4 Source address (Specific/Range) -IP DSCP / TOS / Precedence -QOS-group (output policy only) -Discard-class (output policy only)	-Outer VLAN/COS/DEI -Inner VLAN/COS -IPV4 Destination address (Specific/Range) -IP DSCP / TOS / Precedence -QOS-group (output policy only) -Discard-class (output policy only)	-Outer VLAN/COS/DEI -Inner VLAN/COS -MAC Destination address -MAC source address -QOS-group (output policy only) -Discard-class (output policy only)

ASR9K QoS - Packet Marking Details

- "settable" packet fields:
 - dscp/precedence
 - EXP imposition
 - EXP topmost
 - cos inner/outer
 - qos-group
 - discard-class

ASR9K supports maximum of 2 fields per class-map. The same 2 fields can be placed in any combination below

- 2 sets per police-conform/exceed/violate
- 2 sets without policing.
- Note: In MPLS context only EXP marking is supported
- Remember that mpls encapped packets can't match on L3 criteria (same for ACL)

ASR9K QoS - Policing Details

- RFC 2698 supported (2r3c) and 1r2c
- Ingress & egress policing supported
- General Rule: Policing required on priority queues.
 - Priority level 2 classes can also accept shaping instead of policing.
- Granularity of 8Kbps supported (typhoon, 64k on trident)
- 2-level nested policy maps supported
 - Note: policers at parent and child work independently
- 64k policers per NP (shared for ingress/egress) on extended linecards
- Policer actions supported:

- transmit
- drop
- set (implicitly behaves like set and transmit)
- each colour can have two set actions:

Policy-map parent Class class-default Police rate 10 Mbps peak-rate 20 mbps conform-action set dscp af12 conform-action set cos 2 exceed-action set dscp af13 exceed-action set cos 3

© 2014 Cisco and/or its affiliates. All rights reserved.

policy-map child class class1 police rate 20 mbps peak-rate 50 mbps class class2 police rate 30 mbps peak-rate 60 mbps

policy-map parent < class class-default police rate 60 mbps service-policy child At parent level, if it's over the CIR, packet will be dropped randomly. There is no awareness which packet to be dropped

Conform Aware Policer

policy-map child class class1 police rate 20 mbps peak-rate 50 mbps class class2 police rate 30 mbps peak-rate 60 mbps

policy-map parent class class-default service-policy child

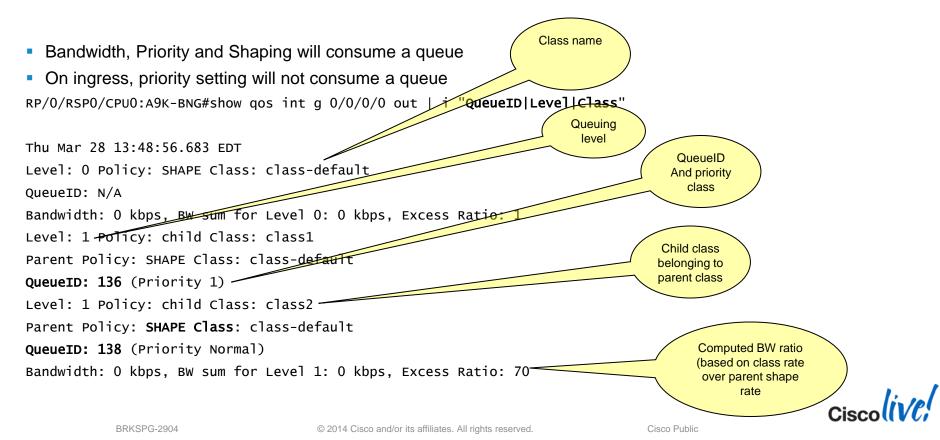
police rate 60 mbps child-conform-aware Parent CIR must > aggregated child CIR Parent police only support 1R2C, child police support all: 1R2C, 2R3C, or 1R3C

If drop happen at parent level, it will drop child out-of-profile packet, but guarantee the child in-profile packet

ASR 9000 QoS - Queue Scheduling

- "shape" for a shaped PIR for a graceful enforcement of a maximum bandwidth"
 - shaping at all configurable levels
 - Min. granularity: 64kbps (L3, L4, 256kbps for L2)
- priority levels: priority level 1, priority 2, minBw/CIR and Bw remaining
- "bandwidth" (minBw) for a CIR guarantee relative to the parent hierarchy level
 - Min. RATE: 64kbps (8k granularity)
- bandwidth remaining ratio/percent" for the redistribution of excess bandwidth that is available after PQ classes have been scheduled
 - configurable ratio values 1-1020
- Two parameter scheduler support at class level and subscriber group level (L4, L2):
 - Shape & BwR (ratio / percent)
 - Shape & MinBw (absolute / percent)
 - Not supported: BwR & MinBw on the same class

Show/debug QOS Commands (Reference Only)

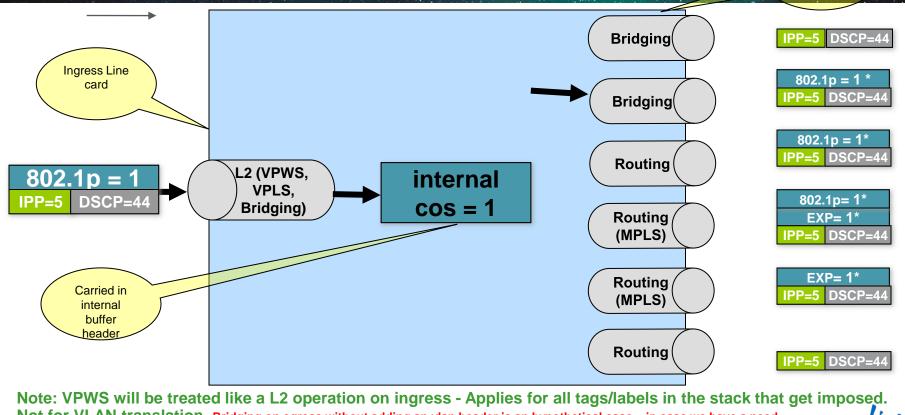

show running-config	
show running-config policy-map <policyname></policyname>	Policy map configuration
show running-config class-map <classmap></classmap>	Class map configuration
show running-config interface <interface></interface>	Interface running configuration
show policy-map interface <interface> [iNPt output]</interface>	Policy-map statistics on a particular non-bundle interface
<pre>show policy-map interface <bundle-interface> [iNPt output] member</bundle-interface></pre>	Policy-map statistics on a member of bundle interface
show qos interface <interface> <inpt output> [member <interface>]</interface></inpt output></interface>	Displays hardware and software configured values of each class for a service-policy on an interface
show qos-ea interface <interface> <inpt ouput> [member <interface>] [detail]</interface></inpt ouput></interface>	Displays the detailed information of hardware and software configured paramters in each class of a service-policy on an interface
show qos summary <police policy queue> [interface <interface>] [output iNPt] [member <interface>]</interface></interface></police policy queue>	Lists the summary of all queues or policers or interfaces for a policy
<pre>show qoshal tm-config <all counters fcu general priority shape topology wfq wre d=""> np <np> tm <tm></tm></np></all counters fcu general priority shape topology wfq wre></pre>	Displays generic NP TM config
<pre>show qoshal <wfq wred wred-scale shape police police-node> np <np> tm <tm> level <level> profile <profile> <num-of- profiles=""> [hw sw]</num-of-></profile></level></tm></np></wfq wred wred-scale shape police police-node></pre>	Displays various profiles configured in sw and hw and the values of each profile

show qoshal resource summary [np <np>]</np>	Displays the summary of all the resources used in hardware and software for <u>QoS</u> such number of policy instances, queues, profiles
show qoshal fcu <limits status profile></limits status profile>	Displays all Traffic Manager (TM) Flow control related info
show qoshal ha chkpt <all <chkpt-tbl-name> {all <recid> info}</recid></all <chkpt-tbl-name>	Display HA related info for PRM <u>QoS</u> HAL
show qos-ea ha state	Displays the HA State of process <u>QoS</u> EA whether it can accept the service-policies
show qos-ea ha chkpt <all <chkpt-tbl-name> {all <recid> info}</recid></all <chkpt-tbl-name>	Display HA Chkpt related info for all the chkpt tables for QOS EA
show qos-ea trace {all errors events internal}	Displays the trace of errors or events or internal events of QOS EA process
show prm server trace hal	Displays all the trace info of PRM QOS HAL thread
debug qos-ea all	Debug commands for qos ea process
debug qoshal <level module events> <word></word></level module events>	Debug commands for PRM qos HAL
debug prm server hal <all error events></all error events>	Debug commands for PRM qos HAL API

What Consumes a Queue

What is Programmed in HW?

COMMAND: show qos interface gigE 0/0/0/0 out	
Level: O Policy: xtp Class: class-default < QueueID: N/A	
<pre>Shape CIR : NONE Shape PIR Profile : 0/4(S) Scale: 195 PIR: 199680 kbps PBS: 2496000 bytes WFQ Profile: 0/9 Committed Weight: 10 Excess Weight: 10 Bandwidth: 0 kbps, BW sum for Level 0: 0 kbps, Excess Ratio: 1</pre>	policy-map xtp class class-default service-policy xt shape average 200 mbps
 Rate is rounded to the nearest 8k or 64k value 	end-policy-map

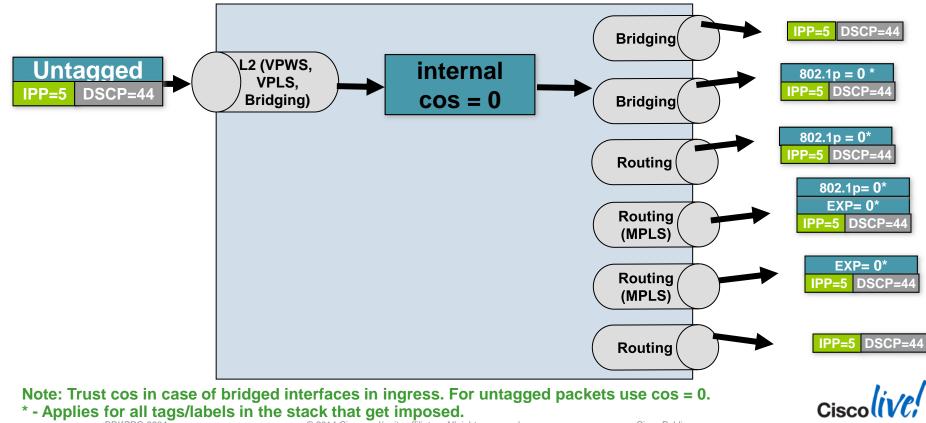

- Shape sets PIR
- PBS is default rate of 100msec of configured shape rate
- BW is zero or 64k, only applicable in oversubscription at sum of parent levels

Note that all hardware parameters (WRED, queue, burst sizes, etc exist whether configured or not!

ASR9K Default QOS

Egress Line card

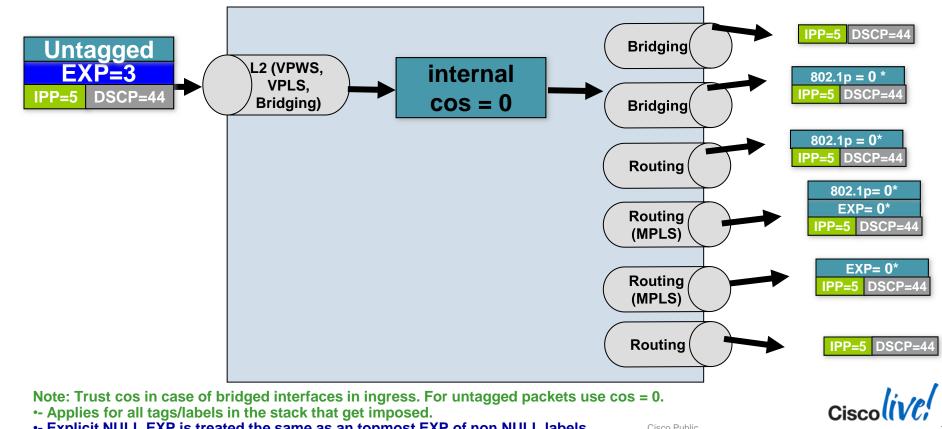
Not for VLAN translation. Bridging on egress without adding an vlan header is an hypothetical case – in case we have a need. IPP = IP Precedence, showing IPP & DSCP seperately since policymap can treat precedence and dscp separately as required.


BRKSPG-2904

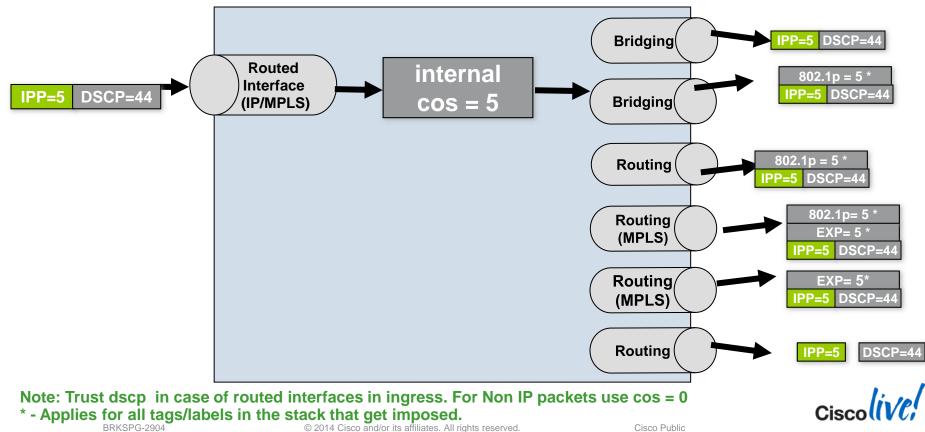
© 2014 Cisco and/or its affiliates. All rights reserved.

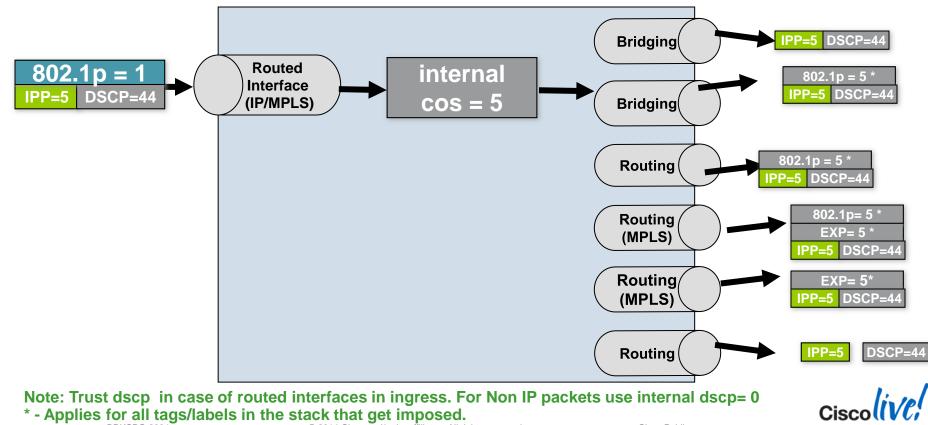
Cisco Public

Cisco


ASR9K Default QOS

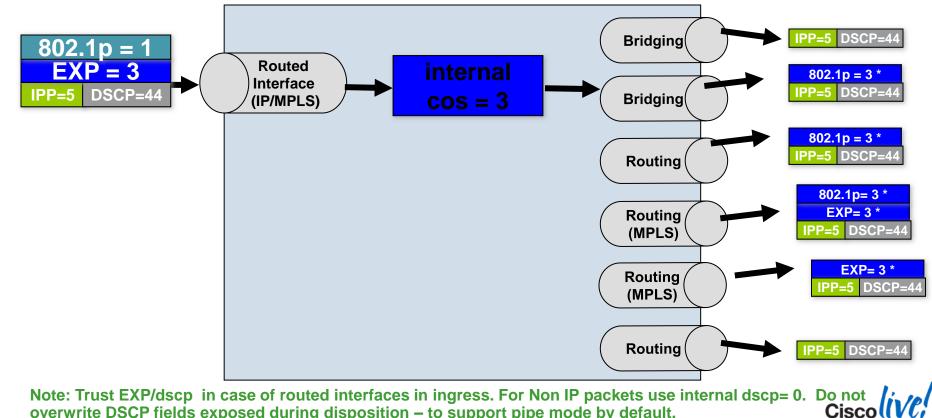
BRKSPG-2904


© 2014 Cisco and/or its affiliates. All rights reserved.


Cisco Public

- Explicit NULL EXP is treated the same as an topmost EXP of non NULL labels.

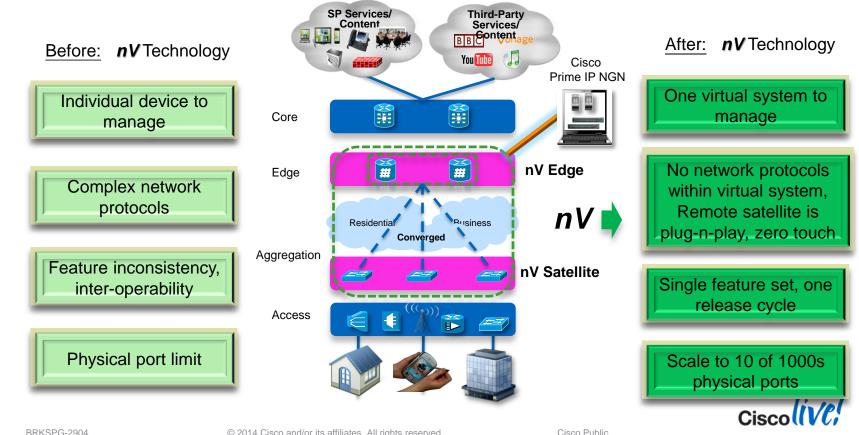
Cisco Public



BRKSPG-2904

© 2014 Cisco and/or its affiliates. All rights reserved.

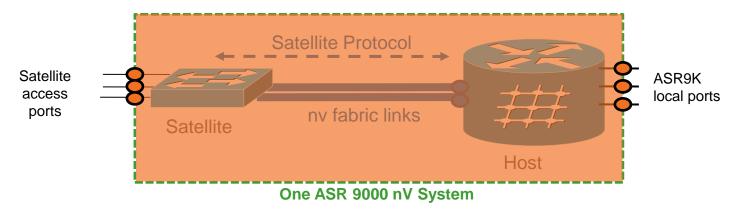
Cisco Public


overwrite DSCP fields exposed during disposition – to support pipe mode by default. * - Applies for all tags/labels in the stack that get imposed.

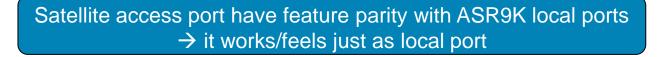
Ciscolive!

ASR9000 nV – Network Virtualisation

ASR 9000 nV Technology Overview



Ciscolive!



nV Satellite

ASR 9000 nV Satellite Overview Plug and Play, Zero Touch Satellite Access Device

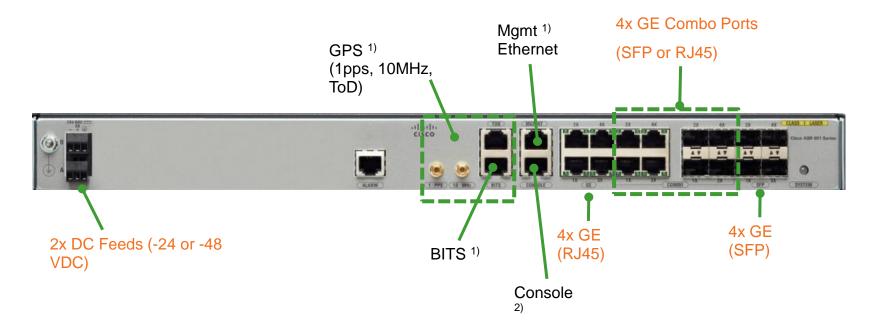
- Satellite and ASR 9000 Host run satellite protocol for auto-discovery, provisioning and management
- Satellite and Host may be in different locations. There is **no distance limitation** between satellite and Host
- The satellite<->host connection is called "nv fabric link", which may be L1 or L2.

Satellite Hardware – ASR 9000v Overview

Power Feeds

٠

٠

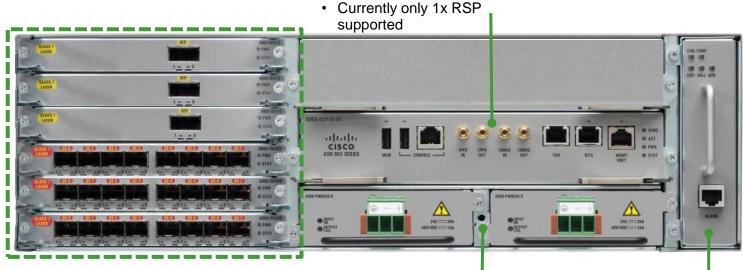

- Redundant -48V DC power feeds
- Single 110-240VAC power feed ٠
- Max Power 210W ٠

Field Replaceable Fan Tray

Cisco Public

 Redundant Fans ToD/PSS Output **1 RU ANSL& FTSL** Compliant · Bits Out 44x10/100/1000 Mbps 4x10G SFP+ Pluggables Initially used as Fabric Ports ONLY Full Line Rate Packet Processing (could be used as access port in the and Traffic Management future) Copper and fibre SFP+ optics Copper and fibre SFP optics Speed/duplex auto negotiation Industrial Temp Rated -40C to +65C Operational Temperature -40C to +70C Storage Temperature

Satellite Hardware – ASR901 Overview



- 1) Not supported/used when operating in nV Satellite Mode
- 2) Used for low level debugging only

Satellite Hardware – ASR903 Overview

Route Switch Processor

Six I/O Modules

- 1 port 10GE Module (XFP) nV fabric links only
- 8 port 1GE Module (SFP) access ports only
- 8 port 1GE Module (RJ45) access ports only

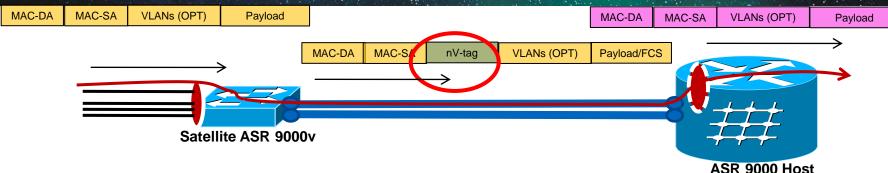
2x Power Modules

- DC PEM, 1x -24 or -48 VDC
- AC PEM, 1x 115..230 VAC

Fan Module

Satellite – Host Control Plane

Satellite Discovery and Control Protocol

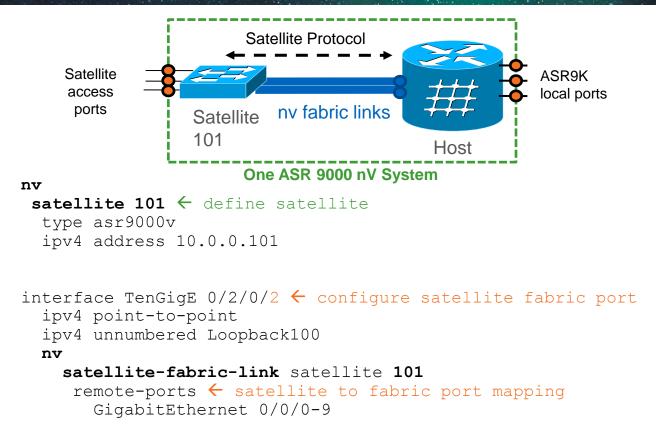


ASR 9000 Host

- Discovery Phase
 - A **CDP-like** link-level protocol that discovers satellites and maintains a periodic heartbeat
 - Heartbeat sent once every second, used to detect satellite or fabric link failures. CFM based fast failure detection plan for future release
- Control Phase
 - Used for Inter-Process Communication between Host and Satellite
 - Cisco proprietary protocol over TCP socket, it could get standardised in the future
 - Get/Set style messages to provision the satellites and also to retrieve notifications from the satellite

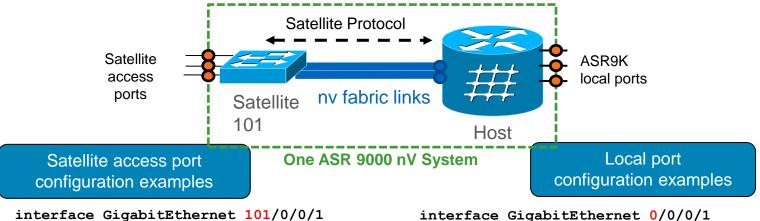
Satellite – Host Data Plane Encapsulation

On the Satellite


- Satellite receives Ethernet frame on its access port
- Special nV-tag is added
- Local xconnect between access and fabric port (no MAC learning !)
- Packet is put into fabric port egress queue and transmitted out toward host

On the Host

- Host receives the packet on its satellite fabric port
- **Checks the nV tag**, then maps the frame to the corresponding satellite virtual access port
- Packet Processing identical to local ports (L2/L3 features, qos, ACL, etc all done in the NPU)
- Packet is forwarded out of a local, or satellite fabric port to same or different satellite



Initial Satellite Configuration

Satellite Port Configuration Comparison to Local Port Configuration

ipv4 address 1.2.2.2 255.255.255.0

interface TenGig 101/0/0/1.1
encapsulation dot1g 101

rewrite ingress tag pop 1 sym

interface Bundle-ethernet 200
ipv4 address 1.1.1.1 255.255.255.0

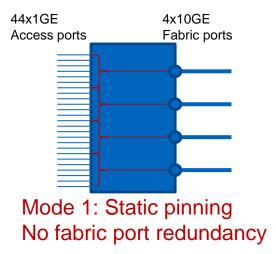
interface GigabitEthernet 101/0/0/2 bundle-id 200

interface GigabitEthernet 0/0/0/1
ipv4 address 2.2.2.2 255.255.255.0

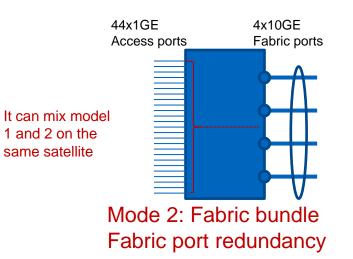
interface TenGig 0/0/0/1.1

encapsulation dot1q 101 rewrite ingress tag pop 1 sym

interface Bundle-ethernet 100


ipv4 address 1.1.1.1 255.255.255.0

interface GigabitEthernet 0/0/0/2


bundle-id 100

Satellite Deployment Models ASR9000v Example

- Access ports are mapped to a single Fabric Link
- Fabric Link failure does bring Access Port down

- Fabric links are forming a Link-Bundle
- Access port traffic is "hashed" across Bundle Members
- Fabric link failure keeps all Access Ports up, re-hashing of Traffic

Satellite Monitoring and Troubleshooting

- Normal operation, like show CLIs are done on the Host directly, for example
 - Satellite inventory reporting, environmental monitoring
 - Interface counts, stats
 - SNMP MIB
 - NMS support, including ACT, ANA/ PRIME
- Low level debug could still be done directly on the satellite device
 - User can telnet into satellite via out-of-band management console, or in-band from Host, and run regular show/debug CLIs

Satellite Software Management Everything Controlled from the asr9k Host

RP/0/RSP0/CPU0:R1#sh install active

Node 0/RSP0/CPU0 [RP] [SDR: Owner]

Boot Device: disk0:

Boot Image: /disk0/asr9k-os-mbi-4.2.1.22K.CSCtz10483-0.0.4.i/0x100305/mbiasr9k-rsp3.vm Active Packages:

disk0:asr9k-px-4.2.1.22K.CSCtz10483-0.0.4.i

disk0:asr9k-satellite-px-4.2.1.22K

 satellite image PIE

disk0:asr9k-mini-px-4.2.1.22K disk0:asr9k-mpls-px-4.2.1.22K disk0:asr9k-mcast-px-4.2.1.22K disk0:asr9k-fpd-px-4.2.1.22K

RP/0/RSP0/CPU0:R1#install nv satellite ?
<100-65534> Satellite ID
all All active satellites

Golden satellite image is always there in satellite flash card for image fall back

RP/0/RSP0/CPU0:R1#install nv satellite 100 ?

activate Install a new image on the satellite, transferring first if necessary transfer Transfer a new image to the satellite, do not install yet

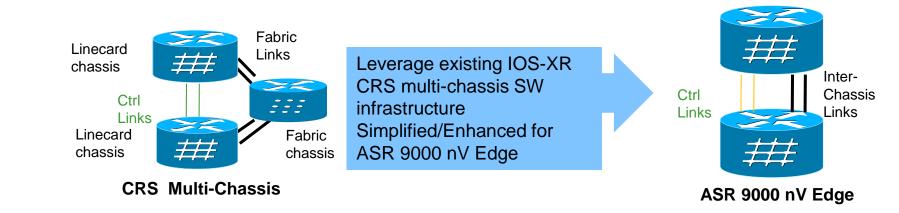
RP/0/RSP0/CPU0:R1#install nv satellite 100 active

BRKSPG-2904

• Critical Error LED ON \rightarrow bad hardware, RMA

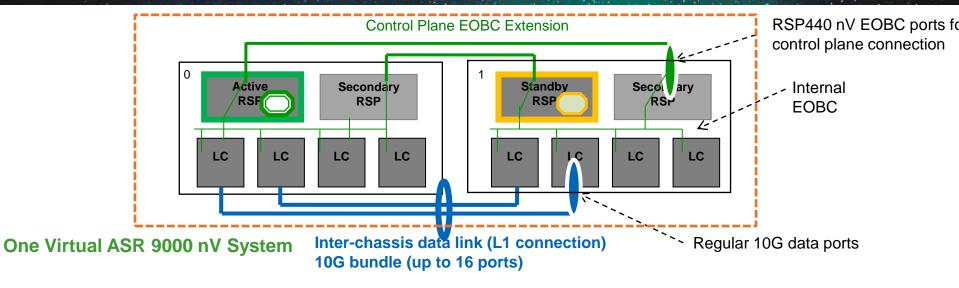
- Major Error LED ON \rightarrow Unable to connect to ASR9K host
 - Missing the initial satellite configuration?
 - L1 issue, at least one of the uplink port light green?
 - Security check (optional), is the satellite SN# correct?

 Status light green → ready to go, satellite is fully managed by Host



Ciscolive!

nV Edge


ASR9000 nV Edge Overview

Single control plane, single management plane, fully distributed data plane across two physical chassis → one virtual nV system

nV Edge Architecture Details

- Control plane connection: Active RSP and standby RSP are on the different chassis, they communicate via external EOBC links
- Data plane connection: bundle regular data links into special "nV fabric link" to simulate switch fabric function between two physical chassis for data packet
- Flexible co-located or different location deployment (upto 10msec latency)

Configure nV Edge globally

Configure the inter-chassis fabric(data plane) links

```
interface TenGigE1/2/0/0
    nv edge interface
interface TenGigE0/2/0/0
    nv edge interface
```

NO need to configure the inter-chassis control plane EOBC ports. It's plug-and-play ③

After this configuration, rack 1 will reload and then join cluster after it boot up Now you successfully convert two standalone ASR 9000 into one ASR 9000 nV Edge As simple as this !!!

nV Edge Interface Numbering

Interfaces on 1st Chassis (Rack 0)

GigabitEthernet0/1/1/0 unassigned GigabitEthernet0/1/1/1.1 unassigned ...

Interface on 2nd Chassis (Rack 1)

GigabitEthernet 1 /1/1/0	unassigned	Up	Up
GigabitEthernet 1 /1/1/1.22	unassigned	Shutdown	Down
•••			

Up

Shutdown

Interfaces on a Satellite connected to the nV Edge Virtual System

GigabitEthernet 100 /1/1/0	unassigned	Up	Up
<pre>GigabitEthernet100/1/1/1.123</pre>	unassigned	Up	Up

. . .

Up

Down

nV Edge System Monitoring

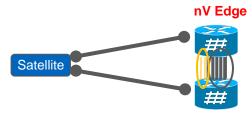
RP/0/RSP0/CPU0:ASR4-Rack0(admin)#show dsc Thu Apr 12 03:01:12.225 UTC

Node	(Seq#)	Role	Serial#	State
0/RSP0/CPU0 0/RSP1/CPU0	(0) 31785)	ACTIVE STANDBY	FOX1545GRM1 FOX1545GRM1	
1/RSP0/CPU0	(31763)	STANDBY	FOX1325G77H	NON-DSC
1/RSP1/CPU0	(32001)	ACTIVE	FOX1325G77H	BACKUP-DSC

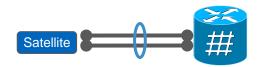
RP/0/RSP0/CPU0:ASR4-Rack0#show platform

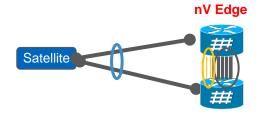
Thu Apr 12 03:00:32.799 UTC

Node	Туре	State	Config State
0/RSP0/CPU0	A9K-RSP440-SE (Active)	IOS XR RUN	PWR, NSHUT, NMON
0/RSP1/CPU0	A9K-RSP440-SE (Standby)	IOS XR RUN	PWR , NSHUT, NMON
0/0/CPU0	A9K-2x100GE-TR	IOS XR RUN	PWR,NSHUT,MON
0/1/CPU0	A9K-MOD160-TR	IOS XR RUN	PWR,NSHUT,NMON
0/1/0	A9K-MPA-2X40GE	DISABLED	PWR, SHUT, MON
0/1/1	A9K-MPA-20X1GE	OK	PWR,NSHUT,MON
0/3/CPU0	A9K-SIP-700	IOS XR RUN	PWR,NSHUT,MON
0/3/0	SPA-8XOC12-POS	OK	PWR,NSHUT,MON
0/3/1	SPA-2XCHOC12/DS0	OK	PWR,NSHUT,MON
0/3/2	SPA-2XOC48POS/RPR	OK	PWR,NSHUT,MON
1/RSP0/CPU0	A9K-RSP440-SE (Standby)	IOS XR RUN	PWR , NSHUT, MON
1/RSP1/CPU0	A9K-RSP440-SE (Active)	IOS XR RUN	PWR, NSHUT, MON



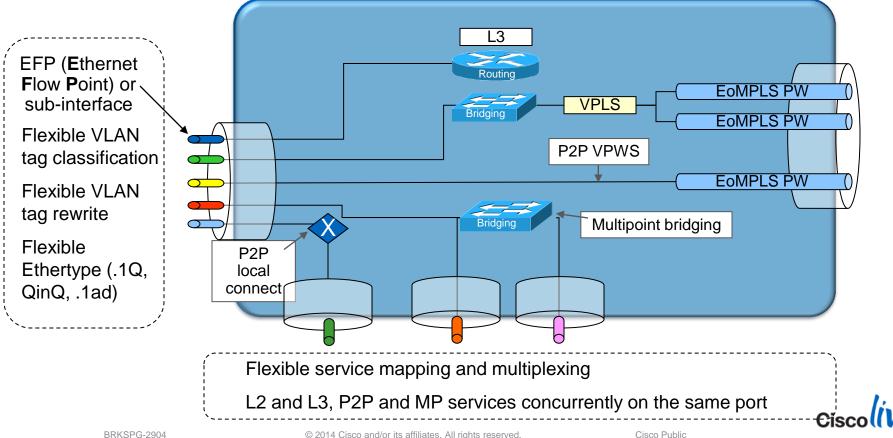
nV Topologies


Single-homed, static pinning


Dual-homed to nV Edge, static pinning

Single-homed, fabric bundle

Dual-homed to nV Edge, fabric bundle



Ciscolive!

EVC: Ethernet Virtual Circuits

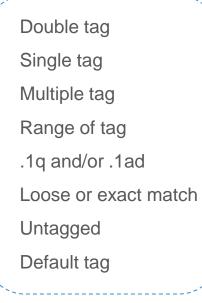
ASR 9000 Flexible Ethernet Infrastructure ("EVC" SW Infrastructure)

Flexible VLAN Tag Classification

RP/0/RSP0/CPU0:PE2-asr(config)#int gig 0/0/0/4.100 l2transport RP/0/RSP0/CPU0:PE2-asr(config-subif)#encapsulation ? default Packets unmatched by other service instances dot1ad IEEE 802.1ad VLAN-tagged packets dot1q IEEE 802.1Q VLAN-tagged packets untagged Packets with no explicit VLAN tag

RP/0/RSP0/CPU0:PE2-asr(config-subif)#encapsulation dot1q 100 ...

comma comma


exact Do not allow further inner tags

RP/0/RSP0/CPU0:PE2-asr(config-subif)#encapsulation dot1ad 20 dot1q 10-20 ? comma comma

exact Do not allow further inner tags

BRKSPG-2904

© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco Public

Flexible VLAN Tag Rewrite

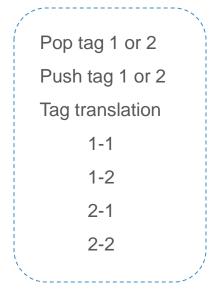
RP/0/RSP0/CPU0:PE2-asr(config)#int gig 0/0/0/4.100 l2transport

RP/0/RSP0/CPU0:PE2-asr(config-subif)#rewrite ingress tag ?

pop Remove one or more tags

push Push one or more tags

translate Replace tags with other tags


RP/0/RSP0/CPU0:PE2-asr(config-subif)#rewrite ingress tag pop ?

- 1 Remove outer tag only
- 2 Remove two outermost tags

RP/0/RSP0/CPU0:PE2-asr(config-subif)#rewrite ingress tag push dot1q 100 ? second-dot1q Push another Dot1Q tag symmetric All rewrites must be symmetric

RP/0/RSP0/CPU0:PE2-asr(config-subif)#rewrite ingress tag translate ?

- 1-to-1 Replace the outermost tag with another tag
- 1-to-2 Replace the outermost tag with two tags
- 2-to-1 Replace the outermost two tags with one tag
- 2-to-2 Replace the outermost two tags with two other tags lates. All rights reserved.

Cisco Public

Flexible Service – L2VPN P2P

EFP configuration example

Interface gig 0/0/0/1.101 l2transport encapsulation dot1q 101 second 10 rewrite ingress pop 2 Symmetric

Interface gig 0/0/0/2.101 l2transport encapsulation dot1q 101 rewrite ingress pop 1 Symmetric

Interface gig 0/0/0/3.101 l2transport encapsulation dot1q 102-105 rewrite ingress push dot1q 100 Symmetric

L2VPN P2P service configuration example

l2vpn

xconnect group cisco p2p service1 ← local connect interface gig 0/0/0/1.101 interface gig 0/0/0/2.101 p2p service2 ← VPWS interface gig 0/0/0/3.101 neighbor 1.1.1.1 pw-id 22 p2p service3 ← PW stitching neighbor 2.2.2.2 pw-id 100 neighbor 3.3.3.3 pw-id 101

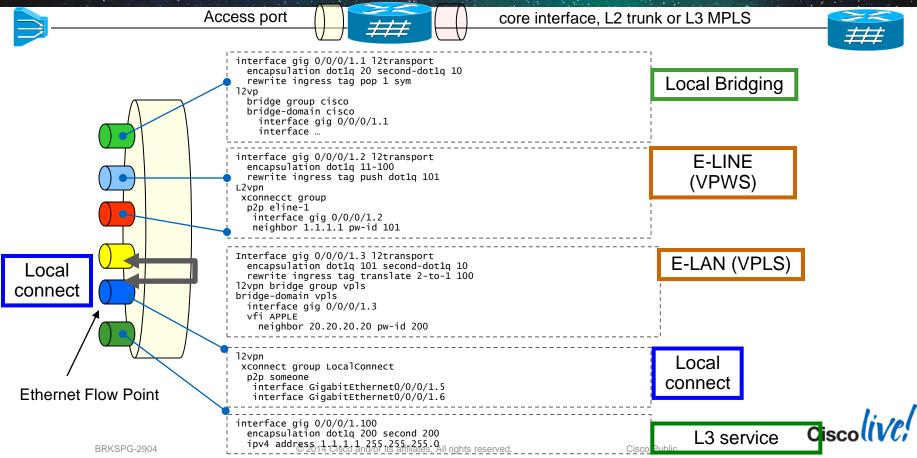
Flexible Service – L2VPN Multi-Point

EFP configuration example

Interface gig 0/0/0/1.101 l2transport encapsulation dot1q 101 rewrite ingress pop 1 Symmetric

Interface gig 0/0/0/2.101 l2transport encapsulation dot1q 101 rewrite ingress pop 1 Symmetric

Interface gig 0/0/0/3.101 l2transport encapsulation dot1q 102 rewrite ingress push dot1q 100 Symmetric L2VPN MP service configuration example


l2vpn

bridge group cisco bridge-domain domain1 ← local bridging Interface gig 0/0/0/1.101 split-horizon group ← no bridging among same SHG Interface gig 0/0/0/2.101 split-horizon group

bridge-domain domain2 ← vpls Interface gig 0/0/0/1.101 Interface gig 0/0/0/2.101 vfi cisco neighbor 192.0.0.1 pw-id 100 neighbor 192.0.0.2 pw-id 100

bridge-domain domain3 ← h-vpls Interface gig 0/0/0/1.101 neighbor 192.0.0.3 pw-id 100 ← spoke PW vfi cisco ← for core PWs neighbor 192.0.0.1 pw-id 100 ← core PW neighbor 192.0.0.2 pw-id 100

Multiple Services on the Same Physical Port

Cisco ASR9000 – Next-Gen Edge Routing Platform

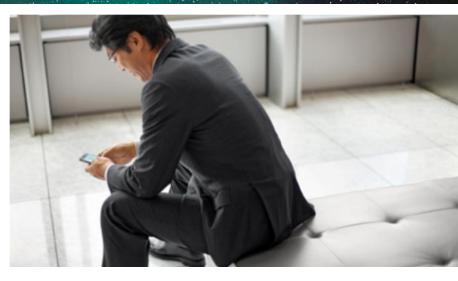
Key Design Goals & System Benefits

- Architectural Design for Longevity
- Product Portfolio with significant HW and SW commonality
- Highly integrated Network Processors for High Speed Scale and Feature Flexibility
- Cisco IOS XR based
 - Truly modular, full distributed OS
 - Enhanced for the Edge (L2 and L3)
- nV (Network Virtualisation) for Operational Simplicity

ASR9922

Ciscolive!

Q & A


Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2014 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site www.ciscoliveaustralia.com/mobile
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 21 March 12:00pm - 2:00pm

Learn online with Cisco Live!

Visit us online after the conference for full access to session videos and presentations. www.CiscoLiveAPAC.com

#