TOMORROW starts here.

11 11 11 CISCO

Integration of Multi-Hypervisors with Application Centric Infrastructure

BRKAPP-9005

Bradley Wong Principal Engineer

"...The Application Centric Infrastructure (ACI) is adopting an innovative approach to addressing these challenges, through normalisation of different hypervisor encapsulations together with tight integration of the Virtual Machine Manager (VMM) of choice, providing a single point of management for both physical and virtual infrastructure as well as the applications that run on top of them. This session will address how the ACI fabric handles single and multihypervisor environments, and how the ACI controller provides integration into different VMMs for a single point of management..."

BRKAPP-9005 ABSTRACT

Ciscolive!

Introduction to ACI

Cisco ACI

Logical Network Provisioning of Stateless Hardware

ACI Network Profile

Policy-Based Fabric Management

- Extend the principle of Cisco UCS[®] Manager service profiles to the entire fabric
- Network profile: stateless definition of application requirements
 - Application tiers
 - Connectivity policies
 - Layer 4 7 services
 - XML/JSON schema
- Fully abstracted from the infrastructure implementation
 - Removes dependencies of the infrastructure
 - Portable across different data centre fabrics

The network profile fully describes the application connectivity requirements

Network Profile: Defines Application Level Metadata (Pseudo Code Example)

<Network-Profile = Production_Web> <App-Tier = Web> <Connected-To = Application_Client> <Connection-Policy = Secure_Firewall_External> <Connected-To = Application_Tier> <Connection-Policy = Secure_Firewall_Internal & High_Priority>

<App-Tier = DataBase> <Connected-To = Storage> <Connection-Policy = NFS_TCP & High_BW_Low_Latency>

Application Policy Model and Instantiation

All forwarding in the fabric is managed through the application network profile

- IP addresses are fully portable anywhere within the fabric
- Security and forwarding are fully decoupled from any physical or virtual network attributes
- Devices autonomously update the state of the network based on configured policy requirements

© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco

•

.

ACI Layer 4 - 7 Service Integration

Centralised, Automated, And Supports Existing Model

- Elastic service insertion architecture for physical and virtual services
- Helps enable administrative separation between application tier policy and service definition
- APIC as central point of network control with policy coordination
- Automation of service bring-up/tear-down through programmable interface
- Supports existing operational model when integrated with existing services
- Service enforcement guaranteed, regardless of endpoint location

© 2014 Cisco and/or its affiliates. All rights reserved.

Service

Admin

Multi-Hypervisor-Ready Fabric

Virtual Integration

- Integrated gateway for VLAN, VxLAN, and NVGRE networks from virtual to physical
- Normalisation for NVGRE,
 VXLAN, and VLAN networks
- Customer not restricted by a choice of hypervisor
- Fabric is ready for multihypervisor

Open Ecosystem Framework

Full-Featured, Programmable API And Data Model

Ciscolive!

ACI Fabric Policy Constructs

 \rightarrow Things that connect to the fabric and use it to interface with other things \rightarrow A compute, storage or service instance attaching to a fabric

End-points

→ Things that connect to the fabric and use it to interface with other things
 → A compute, storage or service instance attaching to a fabric

A collection of end-points with identical network behaviour form a ... *End Point Group (EPG)*

End-point Groups (EPGs)

Allows to specify rules and policies on groups of physical or virtual end-points without understanding of specific identifiers and regardless of physical location.

Can flexibly map into

→application tier of multi-tier app
→segmentation construct (ala VLAN)
→a security construct
→ESX port group
→...

... end-point group [EPG]

Tenant L3, L2 Isolation

self-contained tenant definition representable as a recursive structured text document

EXAMPLE: Three-tier APP

Ciscolive!

Overview of Hypervisor Integration

ACI Fabric Architecture ACI VXLAN (eVXLAN) Header

ACI Fabric – Integrated Overlay ACI VXLAN (eVXLAN) Header

- All Tenant traffic within the Fabric is tagged with an ACI VXLAN (eVXLAN) header which identifies the policy attributes of the application end point within the fabric
- At the ingress port the Fabric translates an external identifier which can be used to distinguish different application end points via the ACI eVXLAN tagging format

ACI Fabric – Integrated Overlay

Multi-Hypervisor Encapsulation Normalisation

Hypervisor Integration with ACI VMM Domains

- Multiple Virtual Machine Managers (VMMs) likely on a single Fabric
- Each VMM and associated
 Virtual hosts are grouped within APIC
- Called VMM Domain

BRKAPP-9004

© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco Public

Hypervisor Integration with ACI VMM Domains & VLANs

- VLAN ID only gives 4K EPGs (12 bits)
- Scale by creating "pockets" of 4K EPGs
- Map to scope of live migration
- Place VM anywhere
- Live migrate within VMM domain

Hypervisor Integration with ACI VMM Domains

- VLAN ID only gives 4k EPGs (12 bits)
- Scale by creating
 "pockets" of 4k EPGs
- Map to scope of live migration
- Place VM anywhere
- Live migrate within VMM domain

Hypervisor Integration with ACI VMM Domains & VLANs

- VLAN ID only gives 4K EPGs (12 bits)
- Scale by creating "pockets" of 4K EPGs
- Map to scope of live migration
- Place VM anywhere
- Live migrate within VMM domain

EPG Spanning Across VMM Domains

- EPGs can take different network identities across VMM Domain
- Applications can be deployed across VMM Domains
- VM Mobility is not allowed between VMM Domain due to vCenter/SCVMM limitation

Recommended Practice for VLAN Networks

- Well separated VMM Domains
- Separate VLAN name space when VMM domains share TOR

OpFlex – A Flexible, Extensible Policy Protocol

OPFLEX is a new extensible policy resolution protocol designed for declarative management of any data centre infrastructure. Unlike legacy protocols such as OVSDB, OPFLEX was designed to offer:

- Declarative resolution Push + Pull API support
- Abstract policies rather than device-specific configuration
- Flexible, extensible definition of using XML / JSON
- Support for any device vswitch, physical switch, network services, servers, etc.

Hypervisor Integration with ACI Endpoint Discovery

- Virtual Endpoints are discovered for reachability & policy purposes via 2 methods:
- Control Plane Learning:
 - Out-of-Band Handshake: vCenter APIs
 - Inband Handshake: OpFlexenabled Host (N1KV, Windows Server 2012, etc.)
- Data Path Learning: Distributed switch learning
- LLDP used to resolve Virtual host ID to attached port on leaf node (non-OpFlex Hosts)

Design Considerations VLAN-Based Hypervisor Networks

- Hosts are assigned VLAN ID to EPG binding through VMM & APIC Integration
- Intermediate L2 nodes not managed – need to manage VLANs on these for each VMM Domain
- Endpoint location discovered through "stitching" LLDP TLVs (non OpFlex-enabled Hosts)

Design Considerations VXLAN & NVGRE-based Hypervisor Networks

- Hosts are assigned VNID and VSID to EPG binding through VMM & APIC Integration
- Infra-VLAN is extended out to front-panel tenant ports -Infra-VLAN needs to be provisioned on intermediate L2 Nodes
- Endpoint location discovered though "stitching" LLDP TLVs (non OpFlex-enabled Hosts)

Ciscolive!

Integration with VMware DVS

ACI Fabric and VMware DVS Integration

- How does ACI Fabric implement policy?
 - Assigning EPs to EPGs
- What are EPs in virtual environment?
 - VM vNICs
- How does VMware apply network configuration?
 - Port Groups
- How are EPGs exposed to VMware?
 - Map EPGs to Port Groups

Cisco ACI Hypervisor Integration – VMware DVS

Ciscolive!

Integration with Microsoft

Microsoft Azure Pack Integration

- Integration with Microsoft requires:
 - Windows Server 2012
 - Systems Centre 2012 R2 with SPF
 - Windows Azure Pack
- Azure Pack provides single pane of glass for Definition, creation, management of their cloud service
- Divided into Provider (Admin) portal and Consumer Self-Service (Tenant) portal
- Cisco ACI Service Plugin enables management of Network Infrastructure through APIC REST API

Microsoft Azure Pack Integration

Admin Experience

Microsoft Azure Pack Integration

Tenant Experience

ACI Azure Pack Integration

Ciscolive!

Nexus 1000V – ACI Edition

Cisco ACI - Application Virtual Switch (AVS)

Nexus 1000V Integration Overview

OpFlex Control protocol

- Control channel
- VM attach/detach, link state notifications
- VEM extension to the fabric
- vSphere 5.0 and above
- BPDU Filter/BPDU Guard
- SPAN/ERSPAN
- Port level stats collection

Cisco ACI Hypervisor Integration VMware N1KV VEM

44

Nexus 1000V Switching Modes

- NS Non switching mode, FEX mode
- LS Local switching within EPGs on the same host, similar behaviour as ESX VDS

Non switching mode

Cisco AVS Differentiation with ACI

Hypervisor Networking	VDS/OVS	AVS
No Switching	Yes	Yes
Local Switching	Yes	Yes
Full Switching(routing etc)	No	Yes
Optimal Traffic Steering	No	Yes
Local (on-host) Policy Enforcement	No	Yes
Single Point of Management with APIC	No	Yes, Robust
Atomic Counters	No	Yes
End-to-End Visibility	Yes	Enhanced
Consistency Across Hypervisors	No	Yes
Enhanced NX-OS	No	Yes
Ease of Install/Upgrade	Separate	Integrated

Cisco (ive)

Integration with OpenStack

OpenStack Components

OpenStack Neutron Networking Model

BRKAPP-9004

© 2014 Cisco and/or its affiliates. All rights reserved.

Ciscolive

OpenStack Deployment

Ciscolive;

Cisco ACI Model

OpenStack	ACI
Tenant	Tenant
No equivalent	Application Profile
Network	EPG
Subnet	Subnet
Security Group	Handled by Host
Security Group Rule	Handled by Host
Router	Context
Network:external	Outside

ACI OpenStack Integration - FCS

ACI Neutron Plugin

Group-based Policy in OpenStack

- Messy mapping ACI to current OpenStack components
 - Endpoint Groups (Ports + Security Groups)
 - Contracts (Security Groups + Security Group Rules)
- Goal : Introduce ACI model into OpenStack
- Starting with Groups and Group based Policies

Group-based Policy in OpenStack

57

ACI OpenStack Integration – Post-FCS

APIC Managed Networking

ACI Fabric also supports OpenStack through the addition of an Operator Managed API Layer

Highlights:

- No OpenStack changes required!
 OpenStack running OVS Plugin or even nova network
- Network Policy defined by APIC in terms of EPGs, Contracts, etc.
- Requires Operator Managed API Layer

APIC Managed Networking

Ciscolive!

Q & A

Complete Your Online Session Evaluation

Give us your feedback and receive a Cisco Live 2014 Polo Shirt!

Complete your Overall Event Survey and 5 Session Evaluations.

- Directly from your mobile device on the Cisco Live Mobile App
- By visiting the Cisco Live Mobile Site <u>www.ciscoliveaustralia.com/mobile</u>
- Visit any Cisco Live Internet Station located throughout the venue

Polo Shirts can be collected in the World of Solutions on Friday 21 March 12:00pm - 2:00pm

Learn online with Cisco Live!

Visit us online after the conference for full access to session videos and presentations.

www.CiscoLiveAPAC.com

#